Create object to adapt proposal scale to coerce average acceptance rate.
Source:R/adaptation.R
scale_adapter.Rd
Create object to adapt proposal scale to coerce average acceptance rate.
Usage
scale_adapter(
algorithm = "dual_averaging",
initial_scale = NULL,
target_accept_prob = NULL,
...
)
Arguments
- algorithm
String specifying algorithm to use. One of:
"stochastic_approximation" to use a Robbins-Monro (1951) based scheme,
"dual_averaging" to use dual-averaging scheme of Nesterov (2009).
- initial_scale
Initial value to use for scale parameter. If not set explicitly a proposal and dimension dependent default will be used.
- target_accept_prob
Target value for average accept probability for chain. If not set a proposal dependent default will be used.
- ...
Any additional algorithmic parameters to pass through to
dual_averaging_scale_adapter()
orstochastic_approximation_scale_adapter()
.
Value
List of functions with entries
initialize
, a function for initializing adapter state and proposal parameters at beginning of chain,update
a function for updating adapter state and proposal parameters on each chain iteration,finalize
a function for performing any final updates to adapter state and proposal parameters on completion of chain sampling (may beNULL
if unused).state
a zero-argument function for accessing current values of adapter state variables.
References
Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1), 221-259.
Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 400-407.
Examples
proposal <- barker_proposal()
adapter <- scale_adapter(initial_scale = 1., target_accept_prob = 0.4)
adapter$initialize(proposal, chain_state(c(0, 0)))