Recap: Understanding the "Greengraph" Example¶
We now know enough to understand everything we did in the initial example chapter on the "Greengraph" (notebook). Go back to that part of the notes, and re-read the code.
Now, we can even write it up into a class, and save it as a module. Remember that it is generally a better idea to create files in an editor or integrated development environment (IDE) rather than through the notebook!
Classes for Greengraph¶
The original example was written as a collection of functions. Alternatively, we can rewrite it in an object-oriented style, using classes to group related functionality.
In [1]:
%%bash
mkdir -p greengraph # Create the folder for the module (on mac or linux)
In [2]:
%%writefile greengraph/graph.py
# sending requests to the web is not fully supported on jupyterlite yet, and the
# cells below might error out on the browser (jupyterlite) version of this notebook
# install geopy if it is not already installed
%pip install -q geopy
import numpy as np
import geopy
from matplotlib import pyplot as plt
from .map import Map
class Greengraph(object):
def __init__(self, start, end):
self.start = start
self.end = end
self.geocoder = geopy.geocoders.Nominatim(user_agent="comp0023")
def geolocate(self, place):
return self.geocoder.geocode(place, exactly_one=False)[0][1]
def location_sequence(self, start, end, steps):
lats = np.linspace(start[0], end[0], steps)
longs = np.linspace(start[1], end[1], steps)
return np.vstack([lats, longs]).transpose()
def green_between(self, steps):
"""Count the amount of green space along a linear path between two locations."""
self.steps = steps
sequence = self.location_sequence(
start=self.geolocate(self.start),
end=self.geolocate(self.end),
steps=steps,
)
maps = [Map(*location) for location in sequence]
self.green_at_each_location = [current_map.count_green() for current_map in maps]
return self.green_at_each_location
def plot_green_between(self, steps):
"""ount the amount of green space along a linear path between two locations"""
if not hasattr(self, 'green_at_each_location') or steps != self.steps:
green_between_locations = self.green_between(steps)
else:
green_between_locations = self.green_at_each_location
plt.plot(green_between_locations)
xticks_steps = 5 if steps > 10 else 1
plt.xticks(range(0, steps, xticks_steps))
plt.xlabel("Sequence step")
plt.ylabel(r"$N_{green}$")
plt.title(f"{self.start} -- {self.end}")
In [3]:
%%writefile greengraph/map.py
import math
from io import BytesIO
import numpy as np
import imageio.v3 as iio
# sending requests to the web is not fully supported on jupyterlite yet, and the
# cells below might error out on the browser (jupyterlite) version of this notebook
import requests
class Map(object):
def __init__(self, latitude, longitude, satellite=True, zoom=10,
sensor=False):
base = "https://mt0.google.com/vt?"
x_coord, y_coord = self.deg2num(latitude, longitude, zoom)
params = dict(
x=x_coord,
y=y_coord,
z=zoom,
)
if satellite:
params['lyrs'] = 's'
self.image = requests.get(
base, params=params).content # Fetch our PNG image data
content = BytesIO(self.image)
self.pixels = iio.imread(content) # Parse our PNG image as a numpy array
def deg2num(self, latitude, longitude, zoom):
"""Convert latitude and longitude to XY tiles coordinates."""
lat_rad = math.radians(latitude)
n = 2.0 ** zoom
x_tiles_coord = int((longitude + 180.0) / 360.0 * n)
y_tiles_coord = int((1.0 - math.asinh(math.tan(lat_rad)) / math.pi) / 2.0 * n)
return (x_tiles_coord, y_tiles_coord)
def green(self, threshold):
"""Determine if each pixel in an image array is green."""
# RGB indices
red, green, blue = range(3)
# Use NumPy to build an element-by-element logical array
greener_than_red = self.pixels[:, :, green] > threshold * self.pixels[:, :, red]
greener_than_blue = self.pixels[:, :, green] > threshold * self.pixels[:, :, blue]
green = np.logical_and(greener_than_red, greener_than_blue)
return green
def count_green(self, threshold=1.1):
return np.sum(self.green(threshold))
def show_green(data, threshold=1.1):
green = self.green(threshold)
out = green[:, :, np.newaxis] * array([0, 1, 0])[np.newaxis, np.newaxis, :]
buffer = BytesIO()
result = iio.imwrite(buffer, out, extension='.png')
return buffer.getvalue()
In [4]:
%%writefile greengraph/__init__.py
from .graph import Greengraph
Invoking our code and making a plot¶
In [5]:
from matplotlib import pyplot as plt
from greengraph import Greengraph
%matplotlib inline
mygraph = Greengraph('New York', 'Chicago')
data = mygraph.green_between(20)
mygraph.plot_green_between(20)