XClose

COMP0023: Research Software Engineering With Python

Home
Menu

Patterns

Class Complexity

We've seen that using object orientation can produce quite complex class structures, with classes owning each other, instantiating each other, and inheriting from each other.

There are lots of different ways to design things, and decisions to make.

  • How much flexibility should I allow in this class's inner workings?
  • Should I split this related functionality into multiple classes or keep it in one?
  • To reuse functionality: should I use inheritance, or add class variable which it is delegated to?

Inheritance vs composition

The last point is known as is-a vs has-a or inheritance vs composition.

Both options allow us to define a way for classes to collaborate while also having a single responsibility. As a rule of thumb, we suggest choosing composition over inheritance unless you have a strong reason. As we go into below, composition introduces fewer dependencies and assumptions about how your code will be used in the future.

Inheritance (is-a):

  • Used if you want to have the same functionality across multiple instances
  • Abstracting commonly used methods or data, so all children can use the generic functionality
    • This has a drawback because we make large assumptions about how the code will be used in the future, which is often hard or impossible to do the first time
  • If we find a bug in the functionality, this can be fixed in one place
    • This is good because one change can be cascaded
    • This can be bad because every subclass relies on its parent and changing one may need us to change the other (known as tight coupling)

Composition (has-a):

  • Create separate classes (component) which carry out the shared functionality.
  • Instead of inheriting a method, instantiate the class with the components as class variables, when that functionality is required then we call that method on from the component.
  • Unlike inheritance, you can design each component's interface independently so that it knows how to interact with other parts of your code
  • Potential to have some code duplication
    • Doesn't have the problem of side effects cascading when you alter one component.

We've linked to an article which carries out a deep dive on this topic in the other resources section

Design Patterns

Programmers have noticed that there are certain ways of arranging classes that work better than others.

These are called "design patterns".

They were first collected on one of the world's first Wikis, as the Portland Pattern Repository.

Reading a pattern

A description of a pattern in a book such as the Gang Of Four book (UCL Library) usually includes:

  • Intent - what's the purpose
  • Motivation - why you want to use it
  • Applicability - when do you want to use it
  • Structure - what does it look like (e.g., UML diagram)
  • Participants - What are the different classes in it
  • Collaborations - how they work together
  • Consequences - What are the results and trade-offs
  • Implementation - How is it implemented
  • Sample Code - In practice.

Introducing Some Patterns

There are lots and lots of design patterns, and it's a great literature to get into to read about design questions in programming and learn from other people's experience.

We'll just show a few in this session:

Some explanations won't click for some people even though we've tried. So if you're stuck on wrapping your head around a pattern, check out another explanation from the other resources section

Supporting code

In [1]:
%matplotlib inline
from unittest.mock import Mock

from IPython.display import SVG

def yuml(model):
    result=requests.get("http://yuml.me/diagram/boring/class/" + model)
    return SVG(result.content)

Strategy Pattern

Define a family of algorithms, encapsulate each one (e.g. use composition, or a has-a relationship instead of inheritance), and make them interchangeable. Strategy lets the algorithm vary independently, without requiring any class that uses it to change.

Strategy pattern example: sunspots

In [2]:
import csv
from datetime import datetime
import math

import matplotlib.pyplot as plt
from numpy import linspace, log, sqrt, array, delete
from numpy.fft import rfft,fft,fftfreq
from scipy.interpolate import UnivariateSpline
from scipy.signal import lombscargle
import requests

Consider the sequence of sunspot observations:

  • We want to analyse the variation in sunspot activity
  • Sunspot activity is cyclical, we expect to find this cycle to be about 11 years
  • We can use the Fast Fourier Transform (FFT) to process the sunspot signal
In [3]:
def load_sunspots():
    with open("SIDC-SUNSPOTS_A.csv") as header:
        data = csv.reader(header)

        next(data) # Skip header row
        # The numbers we want are in the 2nd column
        return [float(row[1]) for row in data]
In [4]:
spots = load_sunspots()
plt.plot(spots)
plt.title("Yearly mean sunspot number")
plt.xlabel("Years since 1700")
plt.ylabel("Sunspot number")
Out[4]:
Text(0, 0.5, 'Sunspot number')

Sunspot cycle has periodicity

In [5]:
# Use Fast Fourier Transform
spectrum = rfft(spots)

# the first entry the sum of the data so let's remove it 
clean_spectrum = delete(spectrum, 0)

plt.figure()
plt.plot(abs(clean_spectrum.real))
plt.title("Fourier Coefficients")
plt.xlabel("Real coefficients")
Out[5]:
Text(0.5, 0, 'Real coefficients')

Years are not constant length

After we've started out analysis we realise there's a potential problem with this analysis:

  • Years are not constant length
  • Leap years exist
  • But, the Fast Fourier Transform assumes evenly spaced intervals

We could:

  • Ignore this problem, and assume the effect is small;
  • Interpolate and resample to even times;
  • Use a method which is robust to unevenly sampled series, such as LSSA;

We also want to find the period of the strongest periodic signal in the data, there are various different methods we could use for this also, such as integrating the fourier series by quadrature to find the mean frequency, or choosing the largest single value.

Number of child-classes can increase quickly

We could implement a base class for our common code between the different approaches, and define derived classes for each different algorithmic approach. However, this has drawbacks:

  • The constructors for each derived class will need arguments for all the numerical method's control parameters,

such as the degree of spline for the interpolation method, the order of quadrature for integrators, and so on.

  • Where we have multiple algorithmic choices to make (interpolator, periodogram, peak finder...) the number

of derived classes would explode: class SunspotAnalyzerSplineFFTTrapeziumNearMode is a bit unwieldy.

  • The algorithmic choices are not then available for other projects (so we may have to reinvent the wheel next time)
  • This design doesn't fit with a clean Ontology of "kinds of things": there's no Abstract Base for spectrogram generators...

Apply the strategy pattern:

  • We implement each algorithm for generating a spectrum as its own Strategy class.
  • They all implement a common interface
  • Arguments to strategy constructor specify parameters of algorithms, such as spline degree
  • One strategy instance for each algorithm is passed to the constructor for the overall analysis

First, we'll define a helper class for our time series.

In [6]:
class Series:
    """Enhance NumPy N-d array with some helper functions for clarity"""
    def __init__(self, data):
        self.data = array(data)
        self.count = self.data.shape[0]
        self.start = self.data[0, 0]
        self.end = self.data[-1, 0]
        self.range = self.end - self.start
        self.step = self.range / self.count
        # create separate arrays as some algorithms require an array
        # as an argument and will throw an exception 
        # if a view of an array is passed as an argument
        self.times = self.data[:, 0].copy()
        self.values = self.data[:, 1].copy()
        self.plot_data = [self.times, self.values]
        self.inverse_plot_data = [1 / self.times[20:], self.values[20:]]

Then, our analysis class which contains all methods except the numerical methods

In [7]:
class SunspotDataAnalyser(object):
    def __init__(self, frequency_strategy):
        self.secs_per_year = (
                             datetime(2014, 1, 1) - datetime(2013, 1, 1)
                     ).total_seconds()
        self.load_data()
        self.frequency_strategy = frequency_strategy

    def format_date(self, date):
        date_format="%Y-%m-%d"
        return datetime.strptime(date, date_format)

    def date_to_years(self, date_string):
        return (self.format_date(date_string) - self.start_date
                ).total_seconds() / self.secs_per_year

    def load_data(self):
        start_date_str = '1700-12-31'
        self.start_date = self.format_date(start_date_str)


        with open("SIDC-SUNSPOTS_A.csv") as header:
            data = csv.reader(header)

            next(data) # Skip header row
            self.series = Series([[
                self.date_to_years(row[0]), float(row[1])]
                for row in data])

    def frequency_data(self):
        return self.frequency_strategy.transform(self.series)

Here is our existing simple fourier method, implemented as a strategy

In [8]:
class FourierNearestFrequencyStrategy:
    def transform(self, series):
        transformed = fft(series.values)[0:series.count//2]
        frequencies = fftfreq(series.count, series.step
                              )[0:series.count//2]
        return Series(list(
            zip(frequencies, abs(transformed)/series.count))
        )

A strategy based on interpolation to a spline

In [9]:
class FourierSplineFrequencyStrategy:
    def next_power_of_two(self, value):
        """Return the next power of 2 above value"""
        return 2**(1 + int(log(value) / log(2)))

    def transform(self, series):
        spline = UnivariateSpline(series.times, series.values)
        # Linspace will give us *evenly* spaced points in the series
        fft_count = self.next_power_of_two(series.count)
        points = linspace(series.start,series.end,fft_count)
        regular_xs = [spline(point) for point in points]
        transformed = fft(regular_xs)[0:fft_count//2]
        frequencies = fftfreq(fft_count,
                              series.range/fft_count)[0:fft_count//2]
        return Series(list(zip(frequencies, abs(transformed)/fft_count)))

A strategy using the Lomb-Scargle Periodogram

In [10]:
class LombFrequencyStrategy:
    def transform(self, series):
        frequencies = array(linspace(1.0 / series.range,
                                     0.5 / series.step,
                                     series.count))
        result = lombscargle(series.times,
                             series.values,
                             2.0 * math.pi * frequencies)
        return Series(list(
            zip(frequencies, sqrt(result / series.count)))
        )

Define our concrete solutions with particular strategies, now it's more straightforward to interchange which numerical method we want the object to use.

In [11]:
fourier_model = SunspotDataAnalyser(FourierSplineFrequencyStrategy())
lomb_model = SunspotDataAnalyser(LombFrequencyStrategy())
nearest_model = SunspotDataAnalyser(FourierNearestFrequencyStrategy())

Use these new tools to compare solutions

In [12]:
comparison = fourier_model.frequency_data().inverse_plot_data + ['r']
comparison += lomb_model.frequency_data().inverse_plot_data + ['g']
comparison += nearest_model.frequency_data().inverse_plot_data + ['b']
In [13]:
plt.plot(*comparison)
plt.xlim(0, 20)
plt.title("Cycle length")
plt.xlabel("Years per cycle")
plt.ylabel("Power")
Out[13]:
Text(0, 0.5, 'Power')

Here we get the expected cycle length of around 11 years 🎉

Factory Method

Here's what the Gang of Four Book says about Factory Method:

Intent: Define an interface for creating an object, but let subclasses decide which class to instantiate. Factory Method lets a class defer instantiation to subclasses.

Applicability: Use the Factory method pattern when:

  • A class can't anticipate the class of objects it must create
  • A class wants its subclasses to specify the objects it creates

Factory UML

In [14]:
yuml("[Product]^-[ConcreteProduct], "
     "[Creator| (v) FactoryMethod()]^-[ConcreteCreator| FactoryMethod()], "
     "[ConcreteCreator]-.->[ConcreteProduct]")
Out[14]:
<style type="text/css"> /* devanagari */ @font-face { font-family: 'Dekko'; font-style: normal; font-weight: 400; src: local('Dekko'), url(data:font/woff2;base64,d09GMgABAAAAAMxMAA4AAAACLNQAAMvxAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGkAbxHQc/2AGYACCBBEICobFHIXWcwuGMgABNgIkA4xeBCAFg3AHskpbhPFxhLk5raDOdSeQZGrVcp/AFaabjvNRQXpusGMppZZHwThmARuHwYx97M3+//9PTyoyZptJ0m0DcACi6vW/I50iRy7VopUxa5ptudZpAhHNX3vu1YcVcZVv9Js12+FaCeVWwAvMkMkNHbYIcZntZnmzMJ2u5oxotJ67lTLW5nbLe6D13MNNs90zFMFmOjKShCQhSemP4T+H3meSfqaMklECr5CFIyUTkEzgJifA6PFmWoU//Hz3t89D29qR9PJMm9AS40UW/7ZiutzHizT6rxG9En8n9NeXx1Haw9pwxpSC2M4DRMoTcEjE/5BnHsgqoBybUyNZJ3nyHSTdSu6upUAXUMCBWKEgLlQERIRdFZVH5iqUgpRlW6ayK1RAXIzlQhBciFrXZjl2mcMNiDwyVgf4tfnvgOPggotq7o474uA6uSSOOiIFQSQUQRH7VMyYEbHpdK50qat0m4u8za3//p4bMoOpdUCOXD3AYcYjgnj6/V733BdiZYBVWJFwhMLR+Ex8UXaqqqKioqKivoqKKquyqvowgHMaxIoVKyJWoGJQo+q0tKUGFChQpLgHG7aNMWfOxD9Rudj+79/+83/X7f8salY1xhg36wTHcT3PcRxHgkgQERER6c15nud5OfGanOd5IhJERCSISBARTzxPvIz0ea6b9UREREREJATxciIhiAQR8TwJQYKISHA+8URERCT4v7pUWq12OwJMohC7kfT3Tp3XELB9WMAxfXt4/m35u2d3HsnQ4un6x+O7EuBKdRKJ8GAUIZ4uUQRFH9VL9txfocnlyOFz00/WG/nfC0FqRtvN6cQs8vuvO16RMKhDQ5CGkgrBEkrFgAaeVC6Fb3Kf2jQ5LMkfpNM4NAF6vk7c9++SmaCEKCCpVAqq9b/uezvLXbvftyAExKKBkIVsagYk5ZOzZZur07e0nPqndafRxKMwAqmIRyPh+b61vl5VZfTvgeOBnGUhzTiUgEKPH97tjLxuOGwTeYa4Iz2q2UOyOwgOzkHACyjar9onItZ2iIZOCaQuXrrYzld6/tARq/DD9I67gUh+mEs4sUmR1IDY9PGad4+NjbOJtlAHtxlagN8nZpDQTeh2G2gURPFD1P+9Uz9NvThXtiO7yHn8BUiW3PYBwFfj+dHs8swuS3LsANkcYCdcToH2VdBy+hCzp5J1tO5/tu5U3T4AnwjJOUpu1MA8cx7hQ+mD2ww5Y643LD0PATfGjmlIiQgwc1jCkq8N8BtpVQ1t2SI8E5SfX7O0/+VnmpnNQf6llCvmMFt1IEzJYSocyapy5iXZzJ+X3M4kR5NZzGF2C8khqbQs9wqkCBzQwgGzPFdiISvkCX2qTldV19VWV4tmAinEAp/vJKPeLFPIiI0AYn0t6drsC+WC3HB08P7/EKebdOZ1wtYIozrWv8wf1YNUCKfR/pfNcj90NaPYdY5mBcmWK3FxSJTknURYw/+vqu8KiC78rafWMSfDYvuXmvQt00Lc94BHvguA1ANFRVSzSVfK7Vh2ipwCPIIgAIIUSZXq0pVWyrLmZBj71OayZ8oyK5vyp5yMGbNMORmGKVjKxct0ik/D8Xzu9LZb/y06UEgpEEq8gTVNmzzeiEgYBGgeUrw+cAoPjClBgK7pFymAhX1KQ4DwtvQJWG0sDIFwc4AWCJWPrJywwMICkZubnBE/Yed/f/8/3WvO3e9X4aMwbBIIHx58uHAD1n/Nm92XAsmisqbxm4VhFnay45aQBP/VrIzqKTMjrCrfFYPaDLSM5Eb+cBDtuVWR9g2NkAEZedEsWkFTsCC1O2+0AXLyXZJa8IQ63zWgZ/+Cpv5xcE4uqUDbEpLuk1OEaWD74gLANhaZcF4su6VyKKfy35sVRE1SBCPMxxgjhEhxTXV+G5//vjOW2OXlb+FyeRVrBxEZxPqnIhdJQ5CSLmvgn8PZqPEiRmVAxyE1eb+QmZnLU7wrB1gBPLYzffXf/gynfdvB5t/8xNMEbxBLeEj379hP6zc5THb7173Wt0RBtGMHpMygvmoAAoAIQCAIG3IElBWUnJhqCUwUqw/O1xc0GRBxXDiQ56d47obISTAMt7pr6wzoR8UxepSsnQUsvrwgLrD/sQQRwB/29wvqfQEAbgH/lhCe/C0RMoi3RBGQfloYWWSU/b2YcOBNgU9Y7LVi42foeoGwuA4A8UxoUYIVz02kP4xBv9H/D4sEcHjKW+DwBOCS4ycLYQz/kuJab1L0q7qOHGcMdY4lXl8AvPEhRC05WVJyR0meVgzAOY+UeuK5e16q25wGb9x55wui2cCGf/VDu1+hQHdoSASTIUOz/Ie+g8M5sWUJCKRqgZIQaDUCo1FgNSseFzTQ8Kf3D6jvfXDrzr0Hj2qePPvoux/+EdX+/2xvP/oCm8UVVPhX3V/BwuDAoSDiFItUjOKVpJRVVrqyFLP4JS3VrP9qDXcy93R3TGXpO/Zq+kae3KREyuFFjlrD0tAq4eTq0moApWKlqqzjjNgC7vOPldhPomJg9iueXd9GpGZ4s/odv6c+oDdP/VD7x8Pun29v/3/E13uU53r0N3nMnvp46hOqT6o9GHRgZmfqh9qHzKszOvAQ9Lmc2Eu+zMu/q3f9bt7e2HhtCg7fp/Dqzd/K2IzTLvvzNF9mCgLIg0bxFdOQhjqMYYGG/eEMf0QjvsAhF7nYJS9z+bsa2SjmeDTKjf6u72aMYxnbOF52xj2+Wcw6aBf8ZnNCcwEATPy9xstQE5/UZKdQUpxy4tH3uZ27aRqZznTrwfI15VAOJTB8mXnAxbDMPxg9gQsBIEhOCDmUUEGLE5hwCjuc8MCPIMKIIoE0crhECRVUUUcL93jEACOMMcMSz4tiCn+7x20pS4/b86D5zvllL2+Fe2j2SvdoYbPTX/Xq1rDmvV7rnq1rvRtYZCMb2+RmNr9XH+bWzUaxsQ/bvv7N9na4n3ay813thmgRSSSRSgZZ5JBPEcWU+YyKaMrlMTXU00gLbXTQTR/PGeIF40wxywKLLPOWd2yywy77fOIXTrngWkAYNS0ii6Z9HYgrgSBJJJdSKml1IpNOZZdTHvkVVFhRJZRWTpcqqaKq6mrpXo8aaBSNxpppqWejjCxYM8V0M802z0IfWuojw1ZbZ4PNtvrMLnsdMOKIY04647yvfO0b19xw2w/ueRixP3nieVjheOVND2fxFFKoYYQbFX5EEUcWRS5yHE30MY7PcmKJLY6448t5Qjlip5NNIcWUc5u7NNNJ94RZZJ1+nvIlUzdbcfGroJh9xwgll9b9HpRbQaFKelJ5lVUdXC1ng6ae1l5nPfU32HCjTTTdXC9baqXV1tvqfR876Kjjzrrs86EixRDbUY5+zGMf74R3eNI7OvjUpzvDmc96Z/dwvXOd90jhMSoc+9/38EV7epjvU9AvAXN0jGkIV3wFWMWVZBKxn+GYnRZlsmQVUtzlnL6u4Eu0jdFpJTezJu4KxPA1omd3AcSStu5XesQBlEQem3KviS4P/Vd+9BOEYpwvxjg6YVx9NbRTpU5I/dUDz4luAtw3b/vMLY9UGb+mm1Apu7aKhN/YGGvjaHXWl35X5jZFTdImjq6kcwjv9GOSPRuPfRRHwVlWsJpTzndQ1UiMvTWOdUYW5cXKce7a8vEmVC1Db7X2V11RSXn7sOs6+xVxr7tvFJ7RFKVKJTyny77GoYoTh2Pn/bp2HSwXPhv/2bfc8Ks9U9XLj1KpKi/L4khlFcq9Gj+vv7zKH8VpDO9u9tvxf0Q4ygtaz3T6pPBV2BtjDHaGEg4PxzfCJe6z9xKV1NhFPrXWoNAzFqCk/FGRDS2n5AYtj30SbuYMOe1mYUx4FYHcDYaNcKwu6dSn5CxAH4s8TKkntW/D9+U3B10jWUiVW1cpvl9elfNzKW1njVdVKMrBAvhlLwfaW7qlNvY4FqO5MHvyrmfG8f3YBL+Pvd0uy2lTV5INSdS7GQrET7YnXcZ22BoxU08TjDxbk83ZxamolaxQ0wf8iT8cYyarW7Mt9VSR3pUdM4API/J2vFaKz5oxbFiWxMqNucAy/s8Tmk0mjFrdbkO93dlRMrbpxMV1Zr+EFbW6HUYNyGc/Eq5XpUv8jOhuuyRbpVmZxjNnnBZm+n1jDaItW0DVX90x/i6KQpsNTbbM2mZUQsHJ/T1/5tPbpzEmWY80fE7ZyYZxKoed+bgJmaqcBsrRR+Ba+nts/FH9zpCX515daB4lDswk/gXOvi9W5Uhbwef4Ikf/IeQFpJrjtmuqjbzuU5HciHaQgWXksE8rMgs9YsfkRpQEtRmMlvRf80jQ2F0LoWZTXLBzKk+v89C+n7rW5YHYIW2v92cxrWt8bVJrEyqVTXAw/R7KXX/KtwcSIXSmob7hBPGSqtUs5z5axp3rsIfhMsWkwoOEE1Xdrq10EfXLrZjt1KrmG2c+1/Nu4sekkx9m1RKXbC6YH36q3NW+quV6DPI8CkLsdt5pli0UN37KQXi9vo/NHvqphlyrbAhR6ajYI3TABXrXsXcqT9QNZ0UY+TmLzM22sK4ny7K99Imp7VxIJdugMyiEVmF5xSftv1t772WXsy/2YEk2A5zzldTA+uDz2puQLW/FD6beQ35zKutAk7OnRMmtlddhk91Mph6VvVBtfGv4jhtG4nAwWbYdK9FaClxGjSvkGj0O23Lkk5ldlnO136uu3WEI43yDwTxfINE4XXapR+Mcv9Sd+BUcwURutLFJg4O8lgRo17DdLlhJeJ73uL+WlomQadntbOJWsJ5fR41/4zKR6nyOVRPrx+JY8K+BO+O/3JPQVMV2Ol2vhrW+y6FqFG759y4zvoFs8uLJQcuZ+N+RQEjitYYCADMAYAJgDwDsAeAKAG8ABAAgBAARABAAIAEAKQDIAEAOAE6CrYsxFdgckDbbN0TBzdsY6+W0Qnnkbhh4xP9J5BgiwbjhefwVoYjlTaBQ80P+bfFN7al1TXUNuS4bD6Pha2nv2t9DSBYkcolUaUqqS8V3cAQamiK6m0IUc8YS+9QIUOu5AwscSHe/OLy64af4eajMm+Xm0qYpM2FaNrNUlTl/pBzgdsxel+MARSrHABJAvnV4gju4h4fwoyAMpcl6sCaQVRyeWz8KbDZqtdvi/5Wk578BYCd+/TxAhj/bcPB6AnOYxyrWQGsw1K91nzH8aQ6OGNZ5WMNp/ohKD9X8znDSrhTbi0QFHqJVB9WRF6vky+j+MwU2BTYFNgVrGEZfT7FuWNCdKdd3jWu9NISptuzTiEemu+8v5vfwejXUbBqFnnVHu0OLnBScjlQbH2mFQxpvV5F8rVXO1cbUwO9Kt8Iqs0e04LmaulanVU8KLFXnE5rmYuJa7qTgxKjy3ArPBaT7Bf00Xzx1XmCsJwBgZFJgqdoPR5QCokoCuc4psJRNeT4F7HDCM/xa/aTAUk4HzmFcahWUApsCmwKbApsCmwI7BVhsAljGiW7PBWQZU6yWQ1TDq16G8rDL+casNVEKbApsCiyjk8k6k+I8cIXrcaMl0nPB4p1712V40jqJGnMtlVJgE8DSLlRO66UU2BRYWsmoEKWAUmBTYFNgU2BTYFNgGS4KuQzc4q6b7Ljr3Aee+kuanuKyGPpngQgXaD2VAkvh4MLdtKpKgU2BTYFlLH3W2ioFlmZ/0EGFHXVOoO71qHXWPqxaaaXA7hEttp4LUmBTYBPA7sdsKjBFq64U2BTYFNgUWIZ1KTYAZlj7zC57nQMAgghiSCJzyRfTmiwFlnKDc3vDA3oY9idPPAdWY/MTtL+BXeDvSAeqGQCr+RFZnGEZQYFjaKCHERbY4Gh3fPWUL1rGyZMw4XQi0vlHDFO3lH425BkR8hF+bWPmD0oGA+RjTnf0aU/nfNa0horzHl1F6rIUrrM8WasmSZxza3vi1FK/4eC3kiJN0xYPdnzXTr51SVqAQyrtgbBM5xSXXwyKr9akAGP8S4jgFnOkubMDk76Skl0N/4Miss+553AhNiLlb2v5sDLICeV56ejz0MSk+7dF7pMnvbhS151WstZDfSAy7iXM5eAGOFsFGm7AxAMje8ZZ3BppqhW+zF1QGnuQp7Nbu8M0khR2bOBU0gP4mUKgS9qr6FbXavdlr8Y1I6RGzwzt1ntud/M9S00KnVVcVLw75LqvJ8m+6o1nzHPKpFKiXpWIdleAy9y3JSEDbKJQYdBx/fY50MHaxN0fHIVEhXz0AwrPfMl4NTkveW2qbi24nHMvL/uhjM6yozvtiag+HHwOk/ROVUM3e+lanAMBER3Bq/b8LPyX+MUFjHTsdY+7aZqx5aU9HCYifdtPaYdnR3s8u7rKpjTsl453gUm6aERMmk4mqHZIop7fY31BqWSlm7eJSdOmj66RDlSygep6kF/G3aWyfjBtfYDr2/YJ0E829tm63uet5H5ihKTaZrfQiGsbeqzYxkceWTL7mIy8L4n7ioLz0XNRdYV6p6p93rZX9J5y8nyhQdZsXLxIXPymy+35h5i8HtOes9mvmzK2tJCX53P3oLO/BrTDSJu00aNb6D4qig0OjV8fr8bp0Hz0Ds5qRaP9uyfH6LKMKYcPcWOYOmQO+bQm2jUvYg+5TbPtC0kiF7yYqhLcdMS01mGQ6OL6xvUuE5NP+B8GcAdFLZjg4jvEnQcWc4U5KIsfChsB6a+BTtWkdWcq0LSmziSKOsrcffBZUKWjG7oXprX14JLritbpNs7QGjrdSXkTL+eKN1C0U3kr+uhGTZWODgWp8JoGgJ6tXO3iz4wsHIvw2r0OKIOxEHSQ2aryyrqWQnf0uMV9Hml/1OKCIT659E70UO6zXxPUe3rZfDVR2usnzdSe0E3r8vPCYW46z875Ww8wIrfZpmWlY6IzJUAuCdhw5a51ufmjuEZX+3KYoLO0MwFJuUTrfOcqaZJmzYF8YgZ/3ozbT761KzIiHx/0bSqs5qvHcGItjN00OdbCckHSwr10TtjizV3/nEZVroGrZXqezrn3GsWszD/dXtxVSrdUy4GVI1Y0oWtay22dcvbgWFMrz1pcPax/95jpCde7bVBkpMkoixKHQn3UZqHys9yZKLlQ6NwlL2WTW/vNjDrqv7FejXrbbWWtfp38Lk3/fpHV3XDb9Kh+40ORBNTWimuLHrMqxQakdmuYFFNhGWi8VOPH3fISCzll7zaFcUMHNutxwhwTV6QV24bCzAdySrNOro4CC2z/u5ZJ8HfAiekPoUPE44IZwQ8uAwjIrMjJtTfYwSYwBBOwythw4Hy5Z+D/z7rxi+e7/1eBlMB/0g/wl54XNrC7/u9/ooofN7l53Ui4jIfycl9NrA2yk8PNDUc63hkrlVh8Byo0LBIadlsgHHmKcIjI6Nj4mZxD5cJAEryojIKRkMD+9gJKBokKKiYuYfFKsvtoFDr7hhg+GN9uhxsSAWZ/9gdhsRwIBL5hAuj8MsN+eBT0CDwIhHxhhj1ydB0wZcaj6sAwmH1i49aPgUH8zxv1QxJnc9UdM11weRxYq0aFXMOwcMYfowm+Bhptg2P5d/DCyYVvkS//FHBx3FsYYU7n4sDDOJj7mlM0Mz+J+WouOJBgLMnFne1niYHwxMA8J20H2gnkoABYw/KxRxV9N9mwcelxLicS/VB8S749P8Ffz2/9T/Xn24gQHypeVvuMVRBPFlpF1i6eWdxqJ8suLHF7NaYtyhAqhiyD5lI2VI2xM5P25nw/yQZv+u10c23nW3TL5GkcfvpnQM+j63vN+usX+gcBA4iCLKiAJ9AGPxPuBfOFWLV6piHNaU37ujQ86gAlNb05LWIFq9vQ1iBucbbkMMCNKK7QxAgbJ6N5aIWb3OtxL3nbvxC1Td0WbMO00M8ky4ICFvaACC6AoOvsfM7/A8uVa125casbd+51hy+AAoRFhEoYlwmpUFplrMZ5XYiGlE2lWobRYZqdltVl292O06N123V7Pa/P9/sRBoACECyEoCIYLkaQEhQtxbAyHC8niAqSrKSoKpquZpgalq3luDqerxeEBlFslKQmWW5WlBZVbdW0Nl1vN4wO0+y0rC7b7nYc56b6qii21DTYxAJPwDvO3gIgLId0ORcMtGUIItQXO4PeHcUTU2EuMxwC2RIcsngfKfPNl+hL8R1oceWNeyRSIqumgdAmU6KCgc2e63RhP4FByCdJ7oMlxKAW+Fy4YQmoUo10VZdTPF5RDhlsv5fuiCEPNIdtUctkF1g0C2Wwd5QYJesxouDCJ3MikPkaE3dAWzVvnB/0++edq0i5q+545jWJHj+Mq+AhFQVPsQoWXHI65ep1GBKRkHWl4q4orjG3Hng7oDxEJGQUVPlo6BiYWNg4uHj4BIRExCSkZOQUCiipFFLT0Cqio++oR4CCBv62URAVT6WAAKgtYuzDGV8HnUdDSyUs/hGg46+KSc5WhUkOADJyyQwQRRUYfZ/X+I21Knvyq1HVGuICUAEr0DV+X4xPAIuDPU9sEeKkyVHgnMvEnmjyWZdvxkQwSIZLcMiUMWGT0jKr1dbQlnWy3uQ77Ywql911z3sf9Bn1x2wWJjIIZJEoUkWPxihxR6fhTE5QCnRbLwu6eGCCpNW7PdvoJWT0nVo4eZaoaJeM3lOjuFQ78+hWyVfitDOqXHbHXfe890GnPsNG/TEpdFAoAwlQFpKgAgwiFo5iJf1/13YErOKaKqcmzxm1HoRXyaZJj5EuEZ3BMrQNcyNtHB8v4gEDJzReK26hNtOSrXNmZX4h7KKfJ7vkdw/6eTSbGYl99dACFXzujQIeR4StHK7z181z0Yx64uK5tDjlX0+OCsZE78xeLjS2YTu2O5GyH+EiR3g6KthOCJ6TItopN9bxMq15kKj+/otVKSJh4NkC4aqwIVkUIkKxiFRKMa9wdtN9g0emgoZDpNh+aEwz4lxRKs+HC8JNhXBXSRGZVF2+KG8J1qdKZQN49Zr9KjTM+Lq2ByPViGi1cufuXIE05PUQvm64fm62BrdcDnHFcDsT+fAB3W8fHpB3ta00FCzt6MlMeCT8PQ4GeMKf0rMKa671dDuBXsT4y7YyqI27Gs82SPVy0BBkaeRN9Irka3yR9FKMv6V3qKWo4ZjYXFvuzhdbqCgxDknzCRqzdGruMLXsIlq7tN+hW/pU0AM+0As+9LET9EUjaA0GaeMdssudOJ8JlJCMiG1fUuOVOstBtZpblYGe8iH6qjl8c4N9F4QfIswvN9xvcRgJRPtppu1VK6LgkFAqo2PxtwER539p16FpuH4mhOifBE3VB2PU+cBIZrizNKc1zBNvrED6KLyhHB7QEGUD+p/L/mYHHEVMTiIu53SilBaK4OXlGc6Gmsik5TqdDXaQcvnnU0AawCh6EBYc5U5CTm52JbKQvVd0oSEj3kqbzIyAvpvk2rXCPP65rGpu4RHVwncDSyhnJo5QVUm5kkvzlEUkg9Rll5bG0yHTjQ7esCdrNtAqCZ6zD4frzIwTbyGmDEzIqPLRMTCxsHHxCYmISRRQKaSmoVV041bPI3u7OmcZkz2c+U5ELVtI9AZDnwFDWxnZxniZvMnGjJEJBZWElIwqsJZXYIO/cX6Aoei/GIDnw0AssLtF3xJsKWCAEwhSuEYHM8eg6WgBWuEGd3rIM17xrk8Itqdt9raEGlrpZ5yXvGOPs0BjyBgORhrasEUwUnEdrRjGMnE7zB1xqvM0A5nKUjZykPPKBSydwIMcethxjgSKaKCP5eL4bsWrXssGNr5XW9/eTomSgzzKaaSTERZYZ59L4fROYqllUVAZldXSUGvv2ZUFhm2004hTLrnhvmdB+xF2xFHFHHfCyaScVj4VlFJO5dXVVn9jLbTah04PFccd3OEdn+lcF7r0XV/zBjcP1uCKp+P5eDnpyEZ+ilGBqvRAX+iZ+dX+K+GrYzaxi0Oc5mvu8Ig3YhKYBBFBKQZxSFAyUpaWDGWh7q+pr7mvparRU/Xqheb0Rjs60lVSRDqRT5QnXXKkYEqmYqqnXpoeGiiEi4NOzQuVkgPAiFWcSJ58sdPnFzNtnjxkKkrx9qhb+1K19BA4clU30rd/w6791+/cf4ddDAvs3pm+eq+pK3cMbLRVjixTFCZFbCqzms8SdmV39mgTB8vbG84bievc5n6PedFbPvR1IJVBFVCPQh/2QCIVpWhEP5ZZf0t7y3sry9pszb4czfl8lx/zpGBodJqIpirm4i7hkim35b58KuuK7xjvBO/gaqyeGqmFWq29Om1YOoMO0dXN0jwt1gqt3oZt3fE9473gPdwt3d+TvdhbfdjXTzaDw5A/GZ7cT1FAAQCg92NA2R3+i0wgAIDCAGJTWC8kY4YzUHu/GA0fFHlILsrZ2zq8bJLwzmijm5vnfedPa7dBt4SUn1Q563NcKvuRz2r5j0d4iQhN8M0ma46TaXeBezyK+X/7akDvD7Darypl4p17YqH6/18zAXq3rhrv1CaNAZ5GVfFzzV/X3J4SxYgRl+f7okSb02uuCFFmhJ2PYenwPjdJC86QA0Cqrrw8bjP1vNluhvj78e0l/0ILyOCPGkwWDrbLuVKMGw7ayxB8o4SD9FLYTOiEOBQBZTF/mTL5jTmseGTUm+NIWS18nNzQW3a7AMhjl+OTYi2u3Z04kU9ceFoxsdNwME7a6LbVgAxKh3ApsXUaYbTPASh1HjVPDCIbV6gSPqAo46M4nT1PQu4d44/65y6I7+CtX7nD6qbL+WP19itrfHHMP3iE2cMeX79wAcLmg9oDffZs2qfio+XmJAOA+WBbdVceRQDRA1AY+Yk1+qqsfdrDgC0ZnnO3TeT2aWbcvNxd5eN77ywJbJivyWBR9XhhOQvZpRe9pyEi9elu3vcAKpr73HVpZW7Vkt0TVMzBS+xWhzCZQP5u1WYBRFBbVBgx4OksW2u3fQM/zlyK+fkXENf2TDgbD3uXK+7nCefg9nMMM6/Kw/4VWe26MLaujnXT9gDCKRxAFjufkIWT/2D7MKBychiflVQTrcqR//u49yMu7SDhiIZeTUJyW2TWZl81Di2h+s930urYIIEBd9Oq3fVxjnQrNMfBY/wkQdGEG2RbQdsLyFhE7QmndRJPoKmDGO1LAR0ds3vBQZzW+ESH7LEidkk2L5eDP9YNLBMWkA5zY0NwVp92Jx1YJRdPbdCMkS68/OEVpfGE9SDifl/4/uNbL6BT+Zrfx/aUkaV7OO0/Aebzh8OfVSByexH4s+jm8NCYMNa/Y8DWdEgUkkqmi+gNqMwaC+imOHzcvyqbxH6T/4uNN8sWyVcs6Qu4C64NoQYVeUhxNVYchgzTBXG4z4Lxh1FRhyHkJrR8FI/7T/sEHQ9zWbGrnuXlAcPtOBXgSd2zhLaax3MqqhpDZFU8XhBR9t4Kj5KJHSyKJqwG9WWY9Tkk2m81ONrIKShaqiYwkmq7U8wV6QwG6iwlmmpsTq4VLlnSJ6BMSFlN3V3DYyNTpIT6CXvcjF+NsmWth3Jli39Yep2ceDz0306+kVQsTz7eIw6HdNVZWdTUWB+5VDjRiStUmwSUVZXdXuFxP36veTRD06sJSl3aqzkqndvemBKdmvlQ69g4gUZbFJ4p1YYVHmVaq/JEuVauCKnQMkUSWi1c6lOZuf8CjRmlw1uFo+rpoqLTxPvIHz34xTOmWuErXKY0hBCE/LI1rRtFv7xfx3g6JUBX+z6gpo38yKWWMoe4pgKOgCLxHrs6cxq9GiOfI4WjCMEJKMBQVhqve6jZaQYXf18WvcpzXBuGapQTWgonWi/Tto2eKTzbL0t4mTQhxaFt3MXwnwrQEl+ABrmmuNH5am4DBro6k6DjMEPKvHpqFjBSyCt0lBVj/aadY2b+mh3Sf2OrEyQ+hEzLHYRLM00Pk4ZrOsfqrpkcqrlmc6Aq3kJScU8AJexvd6dpqmSslZ6iceahfhlmdEZR+4FHUhuKJ6gl6+LQlLswKOJelOoMHkRq1CVMhf0BgkCGmsbNCZau424ugyq/Jzra4CA3+5LfEzlN6YILRSyGV51+xakasYBGYeUgVUj5cE+wZKU2srTRLZ17L5k6OiYJ14kxidvbpAOaC68bSQdUFYE0GZIqLhCCjb1FCzMOJePsGBoaawnLGfuZptBFV7JtAysTTzULCFJS0nfddMmobq06NkraQFedXKCmRrWtl6icdHvR+B8IPTBypnRHUXvVvjlSw6LZQ6JL7NLsOc64x/H480rSsX6Td2dRVOUrdxWZ1j2X7pCeNqS71lGl754ixSo89xZJVsS7r0rQQu4v4qiSzQAwKEy0roTte7CIqArKQ0WYVcIWzj+yA+4dfipS1/jKK2v3OolqRnqbUjotz2BEuGlRhiNKrvkYjRgXarU13qYVWo9f3fJPBtOFuDRcE8eNva2NBIdKRt32gyNjbk8WJtU94zWVURsyvtEUN7M/a4melnBwRkvhyOtGashu9fqR9s79DGfsjSTEGQ3eTZ4a6V+gDWc0FpG8YaRGpExv7HPCLPSPJEC7qx1MY61Ob/w+zCWOdflL4nFfWQqJ3G2zsukBeUWWGNG9c3sK8alx02BVeNOjPQGtyJSFeyuv9iUm4nf/RG50RC/XqsuePY4PeGGZbCK66rU8teZBEzYcCBY1t8sGY2UwS97cLHxIaIx6OQMITlITLTD4g+0Lk8EejH4aqCyCBsbB+20LzkBtHhy3NX3rn+9hPSgZEvKjnTzJsR9JJlVjoR77rf8B1TXp3Np/0aQeVvpP1rIlw4kk1Wl3rKGo7W9aRDqw2LemdjOSMFFxUnT03HZB05x9AZC4aqe+YWVvCG1qPzPUqUnZQa3qlH29rBHLt8h0pCHt74hHUuJDhOk5bTxvV6EWmRzCYstjg4X23D0CIM7N3HvqHb9gjLZrQ49S9Q6vL5uv+rijP5aA8q2kSIQMosseDPIgQC9OBH89ucLYalIxGGnofAtDXfOHurWqxv2/90x2bXaz9AwsK1/6sDTtP6dLRLx9IhtelGhFEzK2xxGuhL0vBvd5QMRgtrUxwYYx1w2/Va6lZZnnXlP3WAuNklEhXeqa+nGThnbAA0t3TXXeeaW7pKbFeOltSMl7xvgZBjhxxgQRjm0TOpPRIUYtKn7EwGjeKiL2MVUpi/PQZdekxTu3dHXdSPQEpC3Li6xIt4PhQvWvLE9wHZK3jUmMCBLU22U4c5sIwnarSxF9de1zdtD/o+tudOyQxy87Fy0xecTQXDfi+usSprGk9ITVGsWSr2/o3kTC/38idTYlETQYd6cTwyH6g28ozzyPRVd8JSVl10wQ5UAQKA+J0ExCUYLPFlJPFV2CH38cXPEOSSEk8tAjTzzz3FfD5i0XLh4+ATGJqseAxvGJzcpRHZOCkPZ12CzGA0uoMBGixUqQJEOmMqedc165CypUqtOgUZM3Pug34LsRM9oEgQRIhUZEQkFFw6BRSUfPjFXSlwTpG7JcEluI/cJF4hNIzfb8iCxHnXDGF+2++eGPCSEjCw1U0Mr49EC4JyReAgUJxlPtvT6//DbaDjRM9SFweI+pavkIECNOslPyVLkUARYOS7k7nFHtbzMgY0tkeUuU5rDLXumMRJjiq4BMF8f3wdb6yejEfEISSazZ1UH57hgnUVZC/eLzhiP1MCs5HxOy5saM4eAgOeLThmy5Pb6NOXIdc9xJBQoVKVai1EVXXHVNjVo33HSL2G33PfDUS6+989EnnzVr0apNhy7devT6y3gADMQgHlLgUnRsUjJyxRSUVGIRwaCWheDUrwfQVhRSNfSt2mXvsZ9Q2m2lBg7NGSZXT17GgyPBW8AV+/iXHhEwfFm2vTsV/VkpJ4DuioLg5zIMJmjWiooqEq5z5TXKhsr17xVn7oRoNUrgSUrqlskqf6niSbGVaf7XWh83P5LAJ1I2JlgZIzkf2emFpKpr9jMBPBFAd2VQK0aWc+7Vsll9zQyqxODN8VRBBOz0HmXV5Kg8o1SoJ3dERGxgnxfnMz8GR7LQGNx4R4zHM6FjpXSMNuUCGLqH9ZTQReewdTHLLnEmahTQZ5rID2qaFokg6Nh5E+EEHTTKh3bDGDgKa+VWWxoAHEtAopXDtepMQuYgOILZjcJAHx3XkTYakoyUKLSSRiXHJc8zAppAIL6XnEIBJUayQEfv/6A/rouQrwIU6bHWHt8yw+KtsOAVGiaEpinBsLJSq0XjCsRVRDM1k4mjr81EjaezHlOw0zuR8qkkmegXJpgkk5pkFdnhjk7DJoNCBaQ8zhSTx7hy444SndyHr0Ds8bGjEKG4wkWI9F7KikWPjiuPDSmal1CZnIKeuAayAe9UAlk1WW3PWfEq+iQQLaQUHYMWHUI52pNKtC3VaDOk6E3I0Roo0TS0DB4nVqnuWqyJXttVY+9bkPl7MhGt4mRjtz32svUfO/vYcygA6ptOp6NnYGRiyYo1ph12QrKI8Rdd2yogjuekoUhufJ+AiyEwLisJ74UhRjhLSNC2Rg37h4dwk+3ldPF9BFITvRIzwcfJMDoFWK7TY01nuuy0bgn/+asGEJM1zRrQi87qfiOEgYE8iQxAJc0IUpxhwgCWQR04uW5a13Zdj3Zjr+m1vbG39c611fiaFJGNrHKv7IYe7yX5gLre3DuGTy1CWMNUc/KUVprsFKH/P6mYA96XGYsIF6uAV/r8Kxg8GQQf9wflEZH92ItYOHiblZhMNmZ5VtTeLBlSz6Zhj4o4hhaiRTCm7lKWRZcyc036QcSPQv6ZBAcdkug/1wS5FJ9GQkms1XGtJfWL8W1s2uTGhtKXzr+Lr/8uDX/pKt2JtKRA7pOKEAnKey3zyWYiqTR4DIRBarySbhm4tLKTBfc85segBdxxC8kPo8ZSBtGP/WHrq26oghZBtABib9uxcRm4jxZeGlHWwolCBSoWAyv3+imowhRqVORN8UhBKb0dYllRFYtgiXBmIZNm1cNHCxdhKrH2WAGPYtC+t2gY1UPFUT8K9YcNcTqOBDy5vPLeMxVNIVTKgqIkZB0gK56hzTTTROQzsEwCK8jaqv7MbqG/y1tiCGm3TJ43A069HOz0r+8t8W1lZcgP9/6O75cOXpcv5cK1pn+oH979P+K2FpVUU6PS0jNVfb2qHxtWwSHtWRd3tnS0OqolzszbmjQh/RcmtV40qlrODyeuh+SkLt++gjSYmA3uTY/jrv5Mqh7zqIU1rqR4s9ZI1tCMeXa6k0rdpZgJGekY566EkorTPI2RUeznFYO5M5OnDgJ4ztfhSR/iRlY9Hlys/YxSdOWFEzdFhBM9tTJ4DAij7NHVMQ7ssqjjF5qdjlFkbIM9BMVJ8ajm/PinwdahGYM0Y6odM+3U9O1LWxxPARjUd2a9Xnt9dD7DqvzozB4fwTHNOdN0Gbl4/Hy0kwsiYZ+GwiYxj8hIVBjGO2n7L3bgHjXFnYTMAnQAtYRBPZV1hRNPq2IWKfCvyTFiwVmAI+ExQe8dbnUaaE5SYSdRC7Gz4Ulg8+iFecBOwEqkctUBylMFnUp3tSjd1Qr5yX3QpmiAe2iK70uCnjDssqIO276H3EW8LgmqTk3iYig0q8xFo8+4T2satjsaqjT0L9Y1ejpqXmpJbl6NWG+XOx3URdN34fYQ2DUwSjdwHWENTiHg3BXeXa90D9XH3aWn0V1P13SfPi1cNzo03WeKaVBSjR9R++1b+3C2Ejmf9mAdu+OYFM3MZg9ONOzNJVHS5NlUZzjxTVhNfvUkVW1ouIIH9pddKOBSJpGOJV0cItIKUkGQ10S6H4mIaNujxkCRyH4lLEyJCdEiTmSIFBK+kGeRiYXUUYbezCFcVJeHxW0QTZHpxNJfXexAjLVhRYRxdGH7kj/7e3umJCpP7yTPFE8VWaoCAlSM8JWJwhIC+kkGJKeWJxSebmKnbNbEKpie2J3eZ1vkS6zjZbTZVJ23DP3+zIiN6kHn27s4/dtPcJ3wBIhnTKYLqs+d6BL7WRvaxjQCAdsn72rcOd/N9aNYGmFaIhxy+fNQPBBr1bc+soLxUDvgDZIq+SeTPhV2QGGTWzCoe7jonwYmhsRSO5WxYtyi+FWbUzKHzCemj5oIUMo11TCNIcd1jE0wii0Gb8nysUXw6gmKTY0xRR24s7ilPTPvAueDrmoSA4MjuSmvXmDHAaAUi8kfV0zJQJHrJInZUiKzZFkFMZ2DtSig5/tRbjX7bPmdN1Xd/g4s6TKDgAnWFMTq6bLa5QQiYJb7Qe1y+cufSL2Ofy1CbD+IqIZ6OCsTROVLK6dBQayfBqxFiFjG5YRnkfKHDUiN0cCzO1aUWp7FKYZlYjXQfWbYtPb905ipis0Oxf71KgbVIJ8VTRL8nDnwkV6zXPO85FbYqjhUhkjAnU/FACpuWbaGJpPBGHGhNUoQ5SiTJaTjuRrkb+GilJMDYcT4ZC8Wk5aOg2G5xhq9HVROSKiTcBQxId9P0jpsUGG2TP3Zb5YvGyvZXUPXOmxuBEi4FenOZl6VjJnYuge7lHvS0EY+SEH8rPsBdXhla7KD8IA/d2Wp0gCyYTcnlVXPkpraUY+M2TxwJFrlmhicSmQni0iS8C6gaGrD6ENql0sBSA+XooIPAoD8xViWgvKP95OFokogj1YkNlRm472YLVHCwi+juk06R9DJmn2QmVawaLJpNW/l81sOVauQpKa6j6MwLYVavZLvBiBhaBbpUue0HCccq7rqqUFEZHEALGXo4LrNJwF5iKT33zq3JH1x/JDo2hPh7e/fse/YkvSvXhwkAi9z4UwRuSu7jFyTe7rJJpFYAF2twsD531RQ5tLctEDisjBccOWA2dkctch/kzxGQ9acI1MzwdOkrHxZTtsivsktLWLZWs2F8xPx0+UC9bkj3LtdyIS4v1BSxvspTCXOQy3Sh3Ial9kp9F9BZMEy4n/JzgDMS50FAbv5P+PNAMxrFrl+NWMSyRAG68hanEOebBh4XZuP68sy+ZZjk8VIEtDzAEbkMJhv0vjFVYEYZzeH+DnV7BZgm77IXwoUALskirZtP9RhjAz79vlgmY7KH+Tyhn5KHVx3aklb4vSJPFnDv5Nyiz484sFL9SNwHpE8XsW5ukF/gTPfxdYWLUgK42Wcs1SSm/ThYuqnPVAD6jA2YEoyUpfXDxC9OZBDcX9j5/plAqcPrmXd7Ey9n9A74QZi/Ple/hjAIOd1BD31xfKeNeLMRw61HBmWsxxP4bGGOgALOmGJV+vcwhb/+TZ5Qxb1cLIlJg2sDpl37GIn1D/L5bF2dkEH8TqmkTEkuWK7q6cDIDQ934Nb6mL4eiInSpN1+MwuVMERaA8TPmOsx9vJBf174x/PI9d8tP97FD48bf3f3P4F/6H+3zy89/qz3eLEFlSi9+Sh/DrKrD4EjeIWY4qzXT5o80S/hsZL1Far2znNFhdaHT1y71d+4wgRAQyDI+uDwdrSO1DVBZvXK2qzSX6UYg85wJYKQ7iRBObogAjWKx50a2vULltUlQs2b/6pTxJ4l+nAG+wUEXTYAdQag++dLb+Ivtpq44jzuTrrSopLS+ek1jYIx/JTi3c2z+p57dP21UDqLYKkh3MWWrSzJggqdH0rNiyEWBLGByiORhXj83Rk/6Y+DI/O2w2msojeMJL+Q4EI8rghhUooapFSEaPODExVsWPztC3AvnJGEewWEQXpOSwJdou4YB2ASYdQTT2YysTlwbEPSpXFeBGtdNe1L46w9wMIGhoXTvb6pdgZ31nTwqe4bJWnIeTBgdIXByKNwS3OlMfpNgiI6MsCKDe4eF1mMAPROuFG9aHpFH1bc+Akncd5DFnCbz9sSkSegty88Db4pajmyMvmUaTjpbxsHEdXBG8cfm/u63wUiAj3WVpYG5B+dPxJzABiKivY4Rhg9mMYU3vd5YXy8E8ZPC0RhCGKaSY29vB+kgY0nhSzZ4dZJkeTIOAML0yj2GMNayZleNIXyMhdOv4dngQ6siFMbur2EHiYH8dT0yxLDoqC5QQiwq/q4WW+Mw9UeHZwjTQ3sHUVE52Li6LnyrrA5q0z8qHwxkVUZ5sngU3GqUOK+xmAuBqECvUIjKzYiHNqL51KAbWO/F+EZCvHdVNrocg0JtXuzCFRqrGPco8EvU7APbcWMBFKZL7pG2U3tGEuahbyAF+oQKd+svuPOBoBvV1tiAlIAcq46i8wBNoeznPCbKGEVFhN7AM7BgGZg1C+aIqTsheaYZLYTokpNscPkFC2uZPqAzqrRboE/jINOxIQVPrbqcRHoCH22i3hyi8feZ36AuFE+qFc5hu+rjAd0WEls4YNABu+DD0ixobx7JR0thTcPOZQd7VvqzUVT0aQT+8kkbrzquJHa2PKKaIloKnf8xgF6ZhOw5+gbtGczqhC2LvnqKO7REY5W2OI4X14sYgU+J9RBcVW+BM+3tPv96ZME8kCVZAbSOc6DbN0RotouM7s5DKCgE5h02DcggSZZqvYUN1kNf9x/eGrIPl6GFK3IeVAixKtiipjzskMNMqTMrOAm9jJBEhHhQl8pcnCFMQ5Xm1wcc8Iif+9dMbB118J5DquwUmx+AGyPpyxPRJDisFX3Vkl3ONSzmeKhQjSkM3iJkR3UIpE5SRSpWEc7untjxz5fCFj2dIaWHwlPLa7elR6M0t6ZFJW0uSWvRun1HWchytyC2ZMdOMdmhGOIC/1pE5663KXtMMzskf5ib6hu0XaZhkRzcNYvI93N1F8apFfHBZC5kt4XEK8dirpjJVTMNetlxmEOyZ+NY9EtDNJY0UFBIiSZa19HE0FvLcZVm652D42Y+QznOOPNtucqfLy1iZd94SmnHOTHvdG50UoSeFQzegA285k9E+p3vc8u6HSmIIB2Jf6q4MKW/fwcKA+EbCpKFpIqC8xVJKcO1aM6n5+GBo/gZQHJaCUcH+helwFe9OIkebbSlpE/3eCXPnPiF3MxI20W+3JkHJrFxBYuqERW9ksB255y2MTwX6vSyLyMH+E5s6HKJdGXvSGvkKRaKAB1RmO9e5pqBfYgE7j1+keoLGQMTH8LrTDJkPo/7v2Vlzc9hfkwyalKLyq5BFqMPWZWQeFe0hx0CDsxmP4GUWrGtzRFHzn78e8iPKRhugA5cG4IlmVl4aTRbUGGTVTw/IAhgcaIugnBdqPk4zm23XILi7o21JiL55dUyMPXPxLDaFAtw8+h/JPsY9PNdFlsNLJUgO9JmAEgjcpZHJuXLAra2q0RLwzG1VK8AZK2qxdssJjqxAdmKjcTXBHhVA1sbS44Zfz3Zdj7T5sJTvl81hoof3YbaTF11/Bean+reD1IXNgHkTi250e/MRb811HLnqC9IE06ZVXUoQszBUuhH58ePctogZQsLHigXkyI6bOBKOXDKhU2m6KP1g+EfYMgQ9F0cSZkNjpjdBX0CTQY3QIogjv81f8P7jPAxf0/40iE1hR7Vz2RYyyghFHaDvPDNLzJqdMWAPL4BW5JhX1fJZ+Jd73Amheb3/2tnV9/fst5INqROnwBcvWQo1Ma9c8ja+oMF+H7zlALQp1iCiarUXnVk5H/W3W+xy81gnYu/1A23jlo3s4nDuHi+dgZyJvrC3SmY9EsUk7EMhMBxTX4iUc2Uea1c+JdcmRvdkhskDjGVuZPRk2maqzkd2d3gRw+vwSLBndnMcwu4flvlta54oKlt/SDK7IykwpvQORdZb8aPPvalQWLQEvlsmozMgv8Sli7MRFu6V4xDxGqVR5SUm0g5WTPoykdHbO1CRXZLVdr5GP0AXoKqsG6cVQPh5j5WvORyxdWjFGaSQaspd9B6ux2UNw7tM8VIrUUtJoqaKc707lbVCOWGAemyx4qrqlmD3X5OacUZNsZx9tF1WUDN+I46EYs/mBiC3lEr1nPYL/fd639b0Tr08MJ2dbpb6+VmhRcMxtrCUI3bkNYXyyfpTmJuSXyeIYp9/errLZOgTxqWKZhyPikLvcuHgWRwpnbfiwXTwH3400I0waqC/XfvHlUXoi7sIlPkB4b6SXvo6THySoDYsnJElW3/bvdmok7Xe9tNXNm75H459s4KIJBki0iVxKbG/P221fhnHvESTjZoOnHRq6JWyX7FUWXgkRS/Y+6O5o2okQvFp+8PvtDkBByd+iupGgcE5i9lf6mMdfBtl0wuibzoYiQPKt1NYNCA2vbdcmTQExrtxM/vnxK1dFO0TlktgQ7/smUHAbCp6XNOCvQs37xt0m6YZlXoqfsb51i5pemwSvGVeVbDxtevXh9++PTFB48OB+YH7WiG4nXDtofn/xu0l6ftHVmRUxSEonKf580U4MDvVLqD4uWPg/5GKSlu//rJ3JmFifJgBbSkVOJwOG2qny+t4Ml5rysyciLQNw9V4ctVsIdrTq0InYk9VytInnMQXCwwbqak0idLY5tlXwdbA6fCZpgAJAJQvHrstOzH09CG0XYgv5x8TmH7vZpk3l5P7KjBsQhSePld1E886P1WLpvLibWMgw3WvymC9gMK66u9sugkbrctE6BpbRjKwE3GMUK2/0veFWpEAh3yjcrO94w4LItpF1FTkjEeHqfsDIuKaSZ4mRHMSlPOEueC50T8NgxI4Hv9+LM+u9pfk0aTWbhxJUxctNuloCt92+yZEQGDO0l1J+WIbo3zqjzJLVkIaGOA04rSDhydwQ6eHTR/hcTNix9j36wNogHIcfo1w7qbHyRAWBgsr40HX50qjdajoyDJQbSARwhKXahwfhBBSw/VR5rLjAmHQPlg1oDMPoJVAyqwGPRq6qoNZKcj95q3jUSQ/ivQ65hSfaCG4k3fmxi0IB77Q5v0Z6DySQV+v23wQFJpzUOghFRX2GLUAyNH1uqJD8QfWjyOysLg3ilxn0dXwsNAV1GILbG8F3N+ZlI0sD/fIUSrdS7b8LtjCrBO4yktsN9XgrM3MDYhToJdcQmCUkyjKtinDXTLBJZibWDMYksUqTNGQvpvPavyWIibHfzU56YldPc4JenZHTdNbey9pxnE4GNro8kMPjGFSelVJBX3OVAdk5Dg/khO940EpMlvRnRO1u2y7ox9uxPrtWVHSFNS2VP8qpajzej6TGGuIPEPrEQPr3Wg+2kfi4qz0TW7DpJI+ZcODzmMV7yUdO7f/1bLofcoAiVUsKNBxw8064FMYZZCiGQ/NMxmiJs3h3wE0mD0lVNeEAuVL5dOFAEVuWSqtGLQf50tm+29Y8/X/DGreHXMzjSuyts6Rv9ErkZ/kf0wE97G75QDZDE3pGCwQpf8/waTImaIdwdruqOXftY9NaOsge4e21q2qX7Ta9J2I6shmWtAWPjhNOUo8ILQ4Nk8z8ERYPB7kTFEH62iQtZJDd+hZzDtzdIC4VhwgWXvUoqNBy4QbtjqbxHooO1YqbfSUeih6QRQDfW8w8EE6MxczANUi9zPLqrbimdbiir1ygiLl++XYY5SOWM5BAdZNEiQfJMvmzM14P62VEqBZ3WFBxxkIsbTcm8dENOkUa2s2PzFELl9gFwmQBCsjOe+i0Wm82pCzlYfhaQfXX4/EQFfySoXB5o9KVQFuYdr7YmLRH6h4xNANb2Tjkj7gBeNELOhKjpUZDQJUxR9x0U5WB/NCxzUoNdF/KKT/kVL3jqN2x9q5UZ1toQ5tL0NTl2rbnoRmySlweidiXz+bLIvqb0/uAFR7jd0vcXD7WIccmkFom+fr/6lJnLCNoOHkWhuePSJA2kEGPHfNr/UvB26zT8QCtkvcamCdGBbDSOZCQ1OlXrp8V7maj01NMho0oxEOlAdCQ0dCPuEWdAL0XLL9pvZCvwvhsGKd8T/kbXtyl8ZhZgCNL1nRorDTe1Fdi9CFUuULSM2GxdmJiJOZy/mvOijyOdUJrzLGMyKNl4ENBxDpXs4fGAEspD62vtQ7e0evKDqAQCncIGX8KcEk9LfjLEHOPmYqmzoVuz+R6tQXKCQJ6H5bPrfEoqZXSjK7zjwxavX47ZyckNa68OO8jYe9zobX2udGc0oOC6JvrOCKmc3bCtCf4VornoSZUcSAuRkYurU2+E/vwKgWr8YOGw92/LC/qi2ezMbmHUReajsuEyufHJauWqDYsTqHUPhN5Yv6jMtxJOFuR1h8/6tJmkjqWnd/Bs91t8taiPmv2D7r2Drv9Kmr7pLnZbU4z5rDT24JLDq9MlDUNPseKKho9R4/6y1Vh6b4/MWcG5Tg+M+aBl9ejZXX6mGZjpk+epz6zovh605n1Q0wEZ9uTDnTyEIz/M2zJnLHiBb8wMmRoSuEvJurzUs08EhH/tIXnLTjfbQFlVIVkhndwT5kmsmYzuZ9dRoAPX67DdZLBp8Px6yiyVSCK3VpDdf0XxjP8cfqSoCCqIFAuy8bqOE1H5Mog17TS1NbPdo6gGPe/NjnXPCY3X8oFbgfQZeNJcu+clkTuaiB8Mnv9akWK1f35sTRMYzugAcu4PMKVTzPmoyHQiDQwakaVarnfh6AWYdODq8VqfJNuSxt/ARmqg6PsezncXJb/rkCYoCEX7u/by4SIo1GfALEm8HlhMdWT8cGAU6BT+4TqoMioVjwQSzb4AmRM4NCp6/agIIopBU8GaKw6U37aOZfnLuw6ozHIRYh/GJAOBDEVCmHom2xZCdobM+jOoIHfBwM46rwlaUGPxjyZsidmFCZm4gEcjhy77u5IOt0mRe4DkI3wSh3EpBDZjqEaP85zQYAh1VZ3Bawuqd05VIlYB7rMQZoIR3DlUD2Yuu3pRpK2MmwC/OZB5dVZc7TZOlFZZMGBbbfV8HPGVUc1ihecPu396nV31EfgZFyGmcNtTeRlV6Gnp9aK+QA428ZKjCEd/DsPfqanm6EYcOQu94othPIEXOnxDH22t7ru7OIAaG9UU8JwcZJ+y2X0yvxN8X7QX/pglbBXO5VqBPtr3BMbraHQQWHxp93tq/6f1hdmW0JQib0ZxF9ZvpXEqn2eINCsJrrtWWPD3Ka0U5N69TdL7VLj3J2cfLD+cmC+u6hQh3FtiBHV5R63p9cWxP0wdF//eyz0QxNtQPsYJBKajNzY0rhfI8MTWlavd0vaHQHp7mYb7GifdKx3TJBJ97jy0YgOQxzosf62tZmEs82qr8b+o7n2aCIqRM6wPrcsUNcQMKDaUoYSX+ZTdVhPxWYBKZtHygIHMNjYyCtP/Cv3RjZojTOvfJnaWoOkT69liTnw+paOkOs+kp6n7vKqnKRfFdKsgpE+xNRGMVaEDQ0gzr65w6sBrSMvMwtaPMf+VcvKr80HuvzPsygduJwV6Bj/uU2h1KwOC+Cm9DUD1icd/59lHJMfMHbfP/YfIb1DeTzamJheBJMFLnTq/ftFBEU7ibLcjYuaf0GMm3e9k2DC/wTF+o3Gs5S0yqEoFBroigxQ58XeK2R1WuaYItnRXT6Iup2rRwD44JFRv5bhglqs5zXDe3TieRY7KilvPKIx5j2dWAJBH2Xda4xbPzrhvclNkvRodqvdamu3SwU+oGFF5NFfzEvgsGNLUoT9fyAzMGU1xpgDo6L03dYax4cdHoRmSpNkGT0TsToulkgPV+I8JLTPglHd84iWep+4IjYYdGIAy4fg3H1jPNCYvDKbyTCvoEIqp3l7oim9MFcEwG6KhQs2OrWPnRRC2qMJnWHVknOq60/v9nP0mBLvpvuEFepC7htMGQsdykdHLWbP6wUDZr3IxMC/xgtDDCVtiiF9ao+/5bxPhWofDOABVt5OiSCvqrh3nhqEGLa5jcmgUY/okhYN3zORhOahV1kE3yTombrGhrPuPcpwRXpyQuj15FGs3y6au6wqOTVulAXU6S9dcFjlWw0hr74MBnWuXjsGqEOM1QoG5zE8cZMMDJJGezhuoZhO4Ds5+BQjao8gT0tlBvy7L3u3vp04bz/An/pIGtxqaJfXTI6jWzzMSzyVWdHIHZ2zko2io9lZg1A1TC2QBqAqKVpyqOXLUujjGZfG1ZFhvFWXgju1SnmbcTZfXSU/wXZfpf2lB2WlLBf68sKXtxqu5h/sHWnOtifYSkqJdYIGyO7x92SHjVuPv9SnC7ZcvPdIMeYni81UB6DUjuBZBssng43PNgLKJd0WXL/t1R8G1qC5cVTuu1ZJh13wsMeg6DbbrT+oogaIesNkJd5aChfoXAlyYgWJTFBYW3r1OCuRhQNfc3j8BUMvrq8yC4avZ+mCtWZ55E7MY23kXbQ3ssYqWrAxi9NlI1SqrScLCpTY5vI278sRWash30IjqLryulREgkfzvJH48tuOZ9IR0m68qbzHw65bOAhPNkKS9aNxk/RkJBg38dbR2UCwaorGZwe6KuP+BCKyMftmGeO2zzMzW0dGwlK2Z8tvBgGxOk+IGyVImYl4jWcW/JayGJdtqmg9hGd5I5XnkrvjDP/Q4MoMiYd+RLfKZXeVaa3161XmF2GyiQAyg0zOSJOUvz6XETW/o0l5S/kYBg3w1+vfgUpjSCysBxHkWDE8lZYjcYcFFD6TLlPcnIXOBVZpGUZ+idb9txOXpAspw8TSXoEwwTrF98xnFJJa0hWJtWpxYG4qE04TzIAOoJzjaIFwTw2SAgcx4C7YJEMliJvLa7+LUv+UBbk8bW5DPg8fIhc9zW+rhRMGDBeEhP4KMHe8bak+WuMlkyqsOhUXBx2Ns9BA1vpnna6KYPHzH5Uoxy32d+1FBPA3a6x/PDGkh4Hu3h7ADwiJo8L5PEKAQer3d3eVaZt8gbHElgKGlGT/Rhq2r2nAa+nxo2OMnfjKy4OATz+QVJOLDSASwHVfQnYdOi2QyRU643346udLu2dmfD+tQVOge1T6AUPRie5aDa9918D1jYlacX3L1Tn5WdIOEVBHQEHAYuI2OopxYWeV5nq50Q9DKEc3V06iM6f4LhiDHpce4VE+qIXXm/N/eLG07dTzDLm2nEVY17FKt2IpnsgLTR9zGQdjyhMVjjhNM9KxXQCYqrm1SQ9XjRpxwnuWeUYhIxIr9flcajPTAllxdjopG/TFbl3UG2hsn5qCCSLzs9BtbY5aGx7HlPB0WGz8Iy5YjHV91LytaVU2dZR5odmKuvIT3pVllRtuO0la0mo8Y70WSmze0rZbxN0M+6CYPcvkooasUzQb+JrvYuh1hG59zfSAByaJH5kbJQVG0IH0QMlmKZGPJlar191j7fncMIZJ1PQxg09/4NXAZKhIFAc0ykvOwC3noI38nfuZzO0zKgN3CUgGr7fucjPX30YqgxUcNh/Xg5gseLQX+wjDE5y7w0JoUG3N4+Z8aDc0WDVuQXVBMTSUFC0HzYJoCTSWQnbqHn4wCdpS9/HDlejcjfCQRtCXGHFVkuHkwNkAzWnismUUT43FvnBNAH/iECG7iAnAvLqpmFOLyxu0rQKz00BVSoJmk1+5+4doMntBQGQ/w8ETi2TwU60lHWWr04Lad+zv/9lRpnAL16HxeGK+Vgtn2dejK0+2bJ+RCoHgL/fr4Reo41SmlI90FXaGhWzLnkkAJvddUwpyMORQR1+rOVZiEFtW5goe7IepSatBQLATKbNeX8OaWt9R7wHIXkpg61QeU8i4jEjeVfEgYJhZNv6DSNfGiZTKSonwg+6XZBMYE8Mn6MAh0j9bROlUXToGp3BEZHQjLIy/4Mme5xkGwlvGc20F0ZcrCRWnPFuBJQJUqRmBTm5mQ3rbOZWP59CnKctfUQ7x50mGviq6HM4UbHxWOYWBFn07jOky9GCAgTXVgyLbLwyESmlqQ7ubCsu2U1ARPo4UJCowjJLhP0U3QFzp7QM88lxnVHuUac2WeGGWAfsT+DlhmdX/3KdCBNMHHjAJNaqOoq14rG8gP9r6K/wjka5N5jEUI9WcnTYeu9cEypsQtYi2p/YPwY+7eGJcNeJJRgDT5L0Km1/QHtt6CkZtchbDAzlVpWLqbFWL1o0j4YbjneNZBxs2byFE6cG6sFa/S8WXY69g84z6+gC2fVq0XiEuS2KSmTvRhEvgmT1dRT2RGZJPMNfq53jOw0Gh1bkTA+wQt85wbb7K8270mZehlo5+A1CMK+EVvE6Y4OfUns1088uG1xSlxWvhg+JrPpbOvCTwa4WSYcHuiB9jxOEX1dqZ4j/+IdPcvTDPTN0N8EkrmFbDxcySWinic61TRHWVT+5Nia//DfiGn3kRvkSVZSUVbEEnborNkhjTy3Vs6+uQOHsi7Pp54VXWuMNk2HuirgF10hlEDidaRJ8mdoi2hN8kGoRUWXVIV3S9DgKldxJlR8/8B/Q6mLjlZv5ytKpt15RiJTJH/7AYcClKYmfCU3//crhPoCJgwzIhx06yZx3fDwNe9Vy0Kr1za+9Xcagfn+OqTGbjiZhw6dUtc8EquTQEF8NXoTqpjiMcTay9/OypocGAjwaBopvcusEecyywhJdIhTFvNz5uJOYXxJcs21UCZ6xs3pXu3BXLINngSfVlENCACNAl4wVc8njmk/xgIiZ8yoCHki2XjbI/bGiuQGhonBIk/jZYnjFk4xLupil1hI7uuvf+QwqiIq9fBB79M0vMs+pO8ThdhJEBbcXQlDiIiOGYfhOwMxTMKOoUqyhglsK2+cRcxGpwR1F9ob30tOykM0gVX5u19Hx2/IViBBFWumB1jYbz7O03uQevPyOpx9UB7Bf4bPoBsiKq5/aBCmXBoHO6RbvIQRHpvj8U/M2m2pDuI+uwcHwKoYwVgSS5i6AbCXZC+hJJtWL3n26e9PXqMCoZWZCct9lXeneBOxlvYenJRnR2rOtaUHIDFys5q7uIbF2aevpApnmajcbSFW3iNcX2VHDDSr/OoEeyrBs9rSDQX4538uOru+Zl0Q4Nsst6rDIl7CaaaLLsfA+tlKQmN1Ga4C35LT8kVbK8/yykx4lhkI7NDQN6eXEw/RssW9wEshFosdBxrYVPG+UGYfS8lsjRNGEok7LzHpbGWL2HXxobsVVzxIMze/95yAzQ/Oef2yYtMjuyzH5TLkvb+xlPVmUzYKngtZXOFRjWpfLBNbZSDn1u2YQzyAXu7A7z344jAOfk4jRJHRzEfN9f+64jelc46wm9gFhU/vFD7Z/G+PdBV7ZE0rfgn0HtovwjMNCAMUJb07d6if2CrhHyzxHpy1jO9ghsSYU3kABh2tDIMPYE6pxNwZgJrVa/TenK9QvtL/B6UWX+C4zDF520Va49gHtY5ssMK031E3p/WKwAEJSIJBCGhIenvWckM3qYddO3/xMGhi2ZVwfBYCuhfYnFQ3fe8C0WsP87TmSvFXNvy7tWUbn+eZqjgQypAJbotMUk1M7ga0SwDyzD91lpJXXIqvmAWMtzuy1iaG9zPG8JieDW96wLBLzSwXQLWyLRgJIsMndoSB9xDs0W+6EPCFfbp3urRASX0tPm/hWM54GAP9leAGUOp6vuWJw28WDpRnikiN1m/fQMJaFF1MpKpVzaOh0cSmuy7h9ndTOr06naSn0ZpHJWRK3XV48/zmwW2eDtBqAPeacyW6Qr6/C6xFUqBXLLlXebyxIw80kdxfl68FhzDQtavv2XazhtSwCbTSAjw8bVPcUkAn59hIiA0SZgy0UkAohmX8EM67Upw3Tx4/K0ov5UxPtKh5RbKWDQK1SlbzKSJhYVxUhJVn26jL2cIELiS2y6PMez2yShuZpAPu0TiJzhNISmjHwjvS65JSsEQudW8dP42Xk2D2qj6KLv4pUV2e9OTDIJNsLjWq/ksYSSIiXZApDJ3Q7q33tKuTrp/HvL44sB08AZ2/AiZytkddsexsklMCrngFEc0mEIdNn/OcNCEKhlHnpgSyLq2EFw54kHa67Txy9dL7oEMzQT/3ldRuymSpfZrrY6Hq6pblglC0dRiCgl9OWmhtglnDIL5ognX8givw4CioUC2lfRrAVPQkhIyuTWV2s0ZMFIK3zejIoESMoL9kXKLxEzHBINfsQNJ1libWQtMfe5ovVWWjHwUUvYsaOKuiY9QNwFwHlMqZ/8bXGZ4XcI0frNsTRnX8J2FNMAMdZZqCQoz0FUVT8XB2DIOgFEEDP/KRlLhIi6tt73hZVzUEZlCkW/OmfNzYUYo0wzeu5CCelToS5bZz7lKnymM1uxnBy10TLEllHR9DrkzajHXCe4tuuxv3YvYy/eZ78eXNU6uZBt9F0C9h+LfKKE4jxTC68Ltacs3VvuaHQpVK+jgG2kqF13WNgaWKdlNzlfkhzaSOcmjDv1Y3iZtSVBDFETPWtT8/2rev8QwapZzV+/1MfPJCdPrZz6B3xHL2KuoLQqJ3Xy6XvtQ+Ez3Mb/tveGYix4EOfLTtq4qZB3ewf7Y1+Tq1qq9cclCoH0Du0TTm9ft98lqx5ANURsJFxQPr9ESanjYAz0JmrNZBYukIP6yir9frwL8mJCfBvlblbR0xUB99/0W1ZClyxNCxuGFEJ/lDrKlD30hqNtReEbNxmm+alcMQU7usixCrakhGnlMLN6ogOZHvDZfCw0b7uxv8APvKA9c3isZ+y92a05PiMF6fYi8lbK72JPJ1gIhygWk9hChM/hOPUcPeXDfYJ1yMToSZv4oOVvtLLfwcfUaB4w5q99joDpIPP554E4134feZMmktlRa8Vcn5gWjgWmNNq6dHiGmf+5XgjZyUAZZMbECZKKhO+fGMC7FDc/Nplwmh54VAstP8pjaMVUvOgXgqKA1DJs/rrr33e1knzz3l29Xd1O/vvvkvzz1klmWUEfRXqHVUWx9KS3CAP0nIEdeeSRsqjXsXcT6W89kJhODJXMzf9BW+BaZNzVZR54awudXNnOHwxTJB5QupPwbGrb6LpLmzpUFvz9qDE1X8uP3/0Y5v/mo6rzG8ZtCHw+6F12SU2/fXxUCxoby3z8Y3z6gGya9iCBjWHDK4eGeQ6xCrtO8frrMPZxN363xsvvlSt7x2oRCs9CMiktJR6VxNp7NW3oKsXII+szc6n7O2PZ+BF0wjS1ZUJ+HKgc6FK3kzhYuh2YmWDuB4plMWx46TyeW1X3XVkpOH3dLywODiJ+516Kmki7SXsAHgcnyoUbAaRsLh0rw97LxoRyKne72XlPI6va+TseKNxn2ONJn5lIq1VdHFh8sZD4+PuMw1BsUFGfokNSmNVeOAbvFaJ1NSj4Ii7Ah5PoAD5+BIvfu08H/D53V4vg8jEj/OwwIm71f2JHeWjhfm3LcVq/DNWu1Y3THka3iHg8eGdtdX4ffm++1ro4owubmy3gP7vXbCfRIYT8/4N1nhpoyeUnvwiqsE2nzcCRxDwc+CZ8VHUphSSR9kBbJMTn3z60301P4AD84LaMZFCR+M5+2gbBr1eTeDn2SkJ5Va4aotl+tMYjMdcsS0Dtqv2SwKudA+E9vL8bBOCNNMMD/95n9n/CVWFR/k3uCK1gWZ666AOWrKIOXYpF/EIqOkNCXhVbQ/asiHLgsZM9xVXzNxTm1AL6ELzFngXNefOC89foz1B1+wo2TN7iGud1ZbHsH/mY0oXL+5pvp0dWGEpT6F/zrdeilt6hYojHdEmduJ4pgWnjAgNxwQGW6eS9hMhMvHverygvi1PCJDoXoOcZVwLl+XjQ95bzMbA4jBctd1MJFt4csl2MUXT8euOsn0fA81TF2Z6FDwpCyt8WbJXOuhAr7Q5vNUU01yeZZ33DC2DhRXhuf89Vpr3DMx2erJoM7Enpg/EqgMYKRQ4OXuQumdsS+5KtGU6JWPISdNgtHKu0kflEk+MK+APDqpwQgUmmGdko0Cx+uDjJuADD4XFOnlUIX77hf8+6hvWH1U2m9oaOfPzKNx0HO5LVRKtOGWERBPOZLUhwhbtuNyNJbHHES4rdxNXP//wYXfo6hVTi4rRwBQu9R+C+xGiV4KSFo1orFqr1zvdSx9UaZ4nrJ1gYjCRCVX53D0IOG+Y5xaVyih1mLUSrKrxfdeYmjn5XVLet1GWMi8i/VlLktVfMECeOP58IXnThlPkl+CdgpaX/+Iev17LWFyf56N+zUtL7AEjLZqb8fQRfsdwhG3XRk/B+1Sc45BtoXoDWbWJy8X/XxSlFP7FYf26xlQAqYZbC2kwUJpwTIZnKeSUCTK43N4hH/0HjrcNzptC0ZXMrFXHmsgryfOQ3h0KKzSuLVUtClrl/n1rvnsN21Qje/VwLF1wSKs6drqx/PDYrMuLKzVXcGlaQd325eBdhTitWcFdEby0KIzIkTux4k+WUFm1va87zsIYo3yahOPQ1QaMgAxAMyuT2+dUFQvhaVKipaDi1q1+BsdRQaQGVKKgPBUME4aLW9DZlKekXIEOcxfH8NGqLDW2BZGgYgrt8YIUY0/VKrYI9160UHEPfv1z8JN5MxfUKgyQE+XdYeGrv2RoFt4fCq6FilfPXOH7emSugmD0ZLQzKvzvj58NN3ZUeS3NAQMGP37Cu6Jmhjn6zqZUZZwkKeIHjC/MPGDI54YcJ6mFXdUeyfyrQ41lEO4f6tN875uTjXx4yYbalZ+bKgSUC409nNuvdGO60Gty/E2a+qJiS7pFIPMVWbwMpxiJqQ8aqGidRrlj7FFsa91jGeecZVvmj9/GUj+7XyWGN/F6sFry2IXKHvl5GDSuqnGwsB2U6PJXEPTxi/34S808gB99Qc6nGiuEF/ehugdIzOtpWiNBJe/wkuH0Pq8KSDfv8R5+fwbIYetCojbPCw9MXCyrkc0rzep9G/8tEVZR2E+zBgb654dw58Fz+jQis1+P7XezRsxIShRFGb+PQ9H7xcBkwpJ+OuOVWNyZAfXjydqo3B8tS+60GNP9FrlO+uoNnhzn6GlMZiep4YJ/cKED3VkqFXmuauHpfKTaet4OmSiSHUA7X5taK4xJW04w2G3T21bhan7N5SVTF2lTMTrM6jebl97JxPJSpKof2UUHHGCRR8c8c/PzEpRorlhtmjBSkS8OFxOTLYql+Y6XA5+0TldIZpWnRSwvRk6D8itUOfmvJTx8Fl+HSHUz8jheAL03qNh7GvFlI1gZE836EMWciy1wXLAo50kzPgHd9MElIoKBmuaMJfXyB6YjJxNrVYqCV1VkrBYNKq4/81btFnuiS/VDZYtlCfscVW/XNZjphoINorGwOYZZ6kdJaD6K4rE3n7/OxKe7kqxyUWgiEssoj4Ry6oSuetyl+uOyCNa6RTfoQNXFroSzkyS750fmKwuyU1p7+N//NQC/FNGUGAY3EeM+TEJGLmfN7Xiv63Ez5WeO2CyePYd6XUu1CBSGI+HkbxOspn4D8jL5O+T6b7pWoP9lX/4PplZN6mk2tmE6+QI25p2nqciQj0/Gc0chLKQ82ZpdXtrrx0xEC82pjPmvr5tytoIUfXu/nfvT+xihBJVy6ionbfjHhFYAjWQXro1h2aGduQ95KyoVElyKsycJWRsMDqAJjYl8B+QXVysfltiHzdPLGrQMhi5ty8sfBi4k7NfYc85lut31v6dNQrmveCHp/vEG/aHe1QIdZ5Ptj0xYt1xyQZ85LlFypD4CkIR2MKqrvt0w4YZj8Xem8Yl9KcCnGRWT99cBQEhTV+OLzE1V03y/+eeiqtIkVCTmkYj66lpfWHfEi7kANt9+99y/rt9STD79TxPwzuvauO3GxLa+7rzc6Und1/NiH/H32UX9t0W7yZFH8nKX64EBvoyd1UWCmy472HGusuF5PjlhXVZII5y5/W7+z9okw273wcmFvbFGSSDtj+XgGj5PIPr67mmg5DIw9DJoXFsXcYzBAZORSzmIztBNIp5RERw54Rv21JR1aZ99uKaYQPm0C5l0I7gjxwq8z2GBS5iCrnWsFmUG0pv0zgj+BeeA4lE2yTT0jsWatHgR86rI/MbYpKzQru03V26rmvF7Ru0k3h6PV7tWTxvUHOmZqu+C8EUNd4rfM9kmGxgZUP0miQj/TygzMAMUh25LW2jgmYg+Er0PCLKSbw7BX4eSmNyY0hKOqqO6Ipn928wu+z48dAIrjlh6qNBoy6P0FQTeH/Veg4fnvkvPAImF7or2qx8p5/1O3e6O3qMgbB/wAh9WLN3aNI1kvFR69GY5LhCbq53PUXhGZcUfvXPQj2IkOJ5o20hNmnhvl5DTxVjjqNMsTMibAbK0j1d+JhRM47jz0wLOkWSBnMGlgYGddQfqDOLT7x/O7gVrfHb2yXYMDQIbqv+JhnzLil4pa0s+E86na3Tv0e/LBQrnYIIKZ1TM+lXAlSTwk94ZpZp98MR242IydgFfaSq1qbOrcRGWwq4TSrywe8TEem6MD8Fh208vqJeK+Uy1YcnHS2iA1350/5Eo6VF+yTkrL0DP/hRCTLxonUgB36+/65jTSL5V/LCMmaodENTp1dsJCOxTT9OLsQUfSgeA1jSn6+/RMKyf9iqt24dXLkW1RjUyeHq8IEvGLzduekUePXC4a2eL6a/dfhVZ4vTT8m7/f/vrMlnOeXBpyBCVyo1tkAUXLDxdg6WifTW48kYgbt71dP0SZW5FN99af9rWenDXDWPOhY4xDRKb3lqASmGiq1ZqnABJWC3QpEb8s8DDzFGVYvenTmU7SoyJT16dPOOQfzCOz/tzy9lXGQSzt+y2oOnQy1VlLgova5o5fWT4Z55A1F4W5ELrvzv9Mis9jgB1XtXBDYXAZa1v+cHLrI+/1OuFZGn3ePEHO6YJ07qralktqj/nbjl8rgIO2B4yWR0vpygmj7UXJyidOtDZGQx7qXgo79caF1O6rpEYGu5mB5/bZOC9fgRsI086JPiGX9+x/ampyuXjazdm/dSL5jVv8w3lL+S/ePUxzM/0wbrcvz+Ig2KaVN2aC/sxey7uQLb0r3xonIC4Hk67YhoP8Ri/U3Xna8sfACbq2iXUYPx1xpt4F17zMRC/9YqGMu9N0weSONq5yZOWmS55JhnF3b7y40dNHt8oRl2y6yuokj7vn6aWnXlTtKkdofHq9u4taVC/80+c9SFANXuUI9O53r3XTJtWPGHgh3wtVuMrh6ag33vUwRhxA33qxIbqK1YrqbmSfXcq6odAm0nqoIMJA7IJwCxoV2mtIaQfFfLKhFft8wPI+yszB/PSxorSEd80JlU7fXPJKy8wA+l3Pr41LoZkwpBRIMWGCvhv7JrUR81Fcunc8X2OD/xcyy3w7FFrqXJOJCQ3+eGixKKXvve5lcPnOXVeV362i0p+KTT86LjhzsMj4Es9Bg0gXBMS4t4iFjUCOLytVeXy+aGzyuG2r/COEU2iLUy7L1iWkX+oJ5HUD/9jB5wIV757noGe6kj0qCe8W+OgK3GQpAubzsxPt8hsSi/e8kEbctcktCSjX1aeifdE1GPDjlOG2sNptzk3ZmEnAilwPjPanNUiLWDvnsaQsdg4Wiop9QI+/C4311qU+r0EWf2r7c405YQ42LmlkBx3+pQIWjuzbS71Zg5zG6WcvzSXRkJaLdKK21Vywq8vgU3poncdXHcVZj5T3hZgbMXYhYXxO0DCIefn8fB35q1qT/hmGcvheZcpKcB7Zd0lQDj+7q+ZVi9H4ycJS6bt6l+Po32jzjb/Ascn2lsSML3PpS9/FrDlGB3H1Q0KMYM1I6VVkHbtHMd526kJZHxCcudFljqxos7aF1/2DtPxn546QjWcXVwuXn+g6IbnSsbOgScbPI992agiQGfw/gbGfBPcWETayhgnNA5JwEIs+dVlU/6DgXFpWIDyMdkZ6Z8HWxPc0ed9JF7t3T9XflwvEvUNcPp05eAuicAln7HDjxuzJHNOF2MjuuCeOcdLmR6lYgr+0ykWDAei1pmK2T7702d7Tuq+6F09yCmp7HzCHu58bMNHlHqDpYncL8YhM2/g0ckEsXejxtKe7Iq8ZuwwJQA9mxOH/KkE8KmqztMa+4LQhmH75BI56BRFPLRXXqLlc8OP7u17OqV6PdI/2gT2fF2HLG1LoUmod7vMCBQbmu8ybITjTbouyvMIZgzEd9kgzUv9Ytm1pwVq2qGz0iKiCvyDtWpfeDhF4XkAcFh199o2bTywwtyO3hz5PfapBQyz2zD89oLK+4uqIl944+2eIyKEUhxQlTzEV0fLKlr78yblKmsmCNbfuIqRb8bJSWzxeteZDTj4bwGNZCzOflJJy82BKYZZxsKqj/VPwY+jLaF+x3FE86qenURJKqxGPfIwR/MjtMbr+VVdMgbTAD5axg10+GCY8L3cbNCBz8ei9g0H+nQbTAjeV7bsRF/wHUtsKGtVfRVE3sviv/hqGpNaqARJzVSAa48I+r8VsykwFhAkRxXeJ8HVlEa7MwZhhk/7GOHkufI8+/8fvTim/atq0jyWSzVEzZlNFaOPgZkRGP5SzqcBlreDtwoTz4dspxf02XimccVuIezxAixaGHQxR4Flcgddsrw6CqkarS2zwwxDJXlJfdbINaNdPPwgrpPsUxJjQBBV9Bcsch+8siihcnuVOYIXB0hLWfkLL7TUBNMdGq34HX9E394Wyexdv+REkR3iIwpF35lqZdavGTvFKq1+yx5qIghqRbC/fgQoh8eJLg8031DmNtevRMbfR6gp18dtxBFzMInqQPJPBqvuqNheE8BRN+vnq1kKZje9qYcjvXiPz1y5BPJeq+ShAJF7FEINFilLfP8fAmVPRE3FuVeYLwaZMslMapGK24Kp0O+e4/nj4S+XZ9vZzWpdwqQ/0oDPXUZuGUcLy2psVEQdSX6u/Z8NoLldOMwvuRxTtnl30t+9nVlXlVA3r+8bL0x/U8mITENw7TgHQjr6Y+wowOliBDKBLVinsASILC13Z3bwT7IilqQi5zbmNOMVrwOH0Enf4F7fDGlUN+mTO0KZP3JXbUfWCzmmv8dU1kHWXnxjhis5oYeED7iSNyeokwfsy9JwvpNrZGrSszZcnz0MWzAWim3BfMPpbNxr4uN4qGd370PnqZaxQ2umBvAuRRVNzL0NVe/GNHbmWRNHW7IGeb9oKKkYc/iKyis3FGqmbC92FsTCAauZq5pHfH+DqVg7ko8KfygX8171tKK5NIrVyYCbUIsEApP/opWqYxtrnDV/nHSXWt87tlhWPRX9/o/KIjwhF9rB6kdDrQ5GFA73nDltNnAGmsIUR32uK5UFXS3fnhaK83DQdvRXuc/0+4Dm7PUThZbtvFEAB0B0KBG2vZmNsfwmAUuE2/7bxxlR5IPd7blo1noDo1ND+BVQOwI9v7El2Sb+SdU2c0FWTwBiW/hj6bt7eWrsayG8gU/6LeU39qJVaZZj8NYHQjWbJWwh7koZM02pYDJSvblhYUKgsbmNLa3uqhr/TRJ8weX0o6Dhw7UPbgsqtdEW7iCKuHaNKOdN0FmlhuZR1hlGi2lHYuT2iN7864i0VGewgZ14UAbW/0SgEMlZhjlqbAtkq+us7ILsue7j3UqL95e674AUYVvFJhbauIaccCa2aoIgNE4ia8HFSJcV+/WNvXAjHT5JtTT7GBqZ+n1n3+8gG5C4B9wDzLQcIZFdk7fMhAWmENIJw2pHHvJl54RrByG2Czwjb0zy5+mqxpnTzXp1+xHnh4G/d5o7FH2QbijR42z0OmLZp4Sy/cEhMMC3wzvVz4TRn8hFzGon6zQBGmDXWq88/mW/dBCSAN2H9qcOlBje+zhIbLZx+653a//LvVCAorTghIGrtGv8h8HiiFwfkaNcLd9nUqVR/ZUWIjujDlJYdRqPuzgBU8PIBqpz8uGZS9vf6Gbngwfb5b5TBhhtfgx4EeIJPDEXv9vL0iL2/hkurRWcKd00aFQ1SEdgpe9YOGARZvv4LFMNuwjsOgjdhKLOxAvFP0Xe+vqTPHAOp/Ea11R2O2YLh6RLcrbWh4DA38JMtbB441b2ZWTCoKdPtqA77nMBQcYM3T/RDqkZsK0804+yd8RtsY86ebUUpMwFV8xMIeAdCkoS5c3/SlyEmKg3xtd06fOmajSW3uPWDp/5qPuiXzxJNNG8mJu1LrPn+3GR9eYCuNHc7+GALjeJJGij5xueCSzSRa9j0ITJKonQjJvVcj4jsi/3yGvjKPTkudkuBXPkCbHu4nxcUYB2kwVQQLtbPGdPVNdledVTvit544v1slPHdIYOsgwWXRTxZcnVUrawpk935zoFQezgGAwZKhVm2JIQh+0Ll34F2wXbu3HREqC86kZzJXTrOJ0w38yQNY2RJAymEbnPkKlrC6JKSlA3Xry+RdHjFv+VkjRHYv4WUTLSofwlhIKe9EVqw4Zd50G6+27r9hroL2EGUh1OMGi/UMQqivhjNtUtEIFrUfRHn5YNOACijc5dY03zqVLOa3CUQdVKyy2MN2Vqhu0rTuvJ3hjOh34wz1GYj2DGMQe/o4EHvYQr++BuSuVVo6H+d3P0Eq0JPcEyFEiE7199IAN0jaZPxI364Uq+gU8hi47RvgXME7RXs6mDhPfB7n71xjlMKnPJ2Kdq40LEr/gX3oejJ4rWt9cPe01vqvqqZOKJNKA5V02LHHuxa509eM+jKPlfOg72f8AUowlUC28ug2Zw/3wRfBJQEvt3KvMgJ9rGXUgkeFE8X5iz3AXNIVae8vR1WNOgn3FxtGbfGjJD6lkmEoNDSJLDbtuequ9oaAslXGc7dZ71afZpBJW90uPopJkM/YLjDoKOoKXJJqU2KaZ4NBAjCLE7s56NcvpSLmSvBSIe53PFzgINeCzVnPIh1opi+8jI/HfUZga8LsKf9NYwTNF7Z1Z62u+VDrD/srbkZPddMy12eO8r6tDB9fU/7aN5+Bdd/Mnb8W1OBBihxzgpI1muhxH0l7oJScK6/Ax116wPa89IkQfrGusbfFnmJqzsVWNy0xE2Hns1yY6ysTp3e0NdDyStfKMrLdZEe3Um86wy0F5dYaNCjTB5meBC3cXV9kebCSOeT0irWVW4pBcz6zDB6BztCoP80auwKOKDg+M3p0i2vHAIIgqyZ4RCj/tb4Xgev+SH9AaA3Kfptc1c6MSz/l0z8iyVX3llwb93funvt/VdNdLNthabXHTD2HAofvHXM9VwBdPgDMFNdukRB9yXbTIxMbE8/p85AfUR2bbOj60QihSker2U7tloB/I5eM5sw6RuCPB3Z9qPLSieU6+VDnzlGFnhXzPhd5h5bcM6LURM3oOi65h1A06h9bFqB2HtqK9fjtlYeYJHtvpTVmSP7YdtH4IWvFb6T9/OeN46KuNUlFW7mt2yjSzRqjrCqltJSY0AJh9TEqSsRVrtRrTwe+jeCFzXdKBhiEUrbGwiV/t/tJgSSW0/h3UzGiQ0UJoCryOKEfj7xwi76kZYT4Jkg3IJWAgLrSWUkwzZra8T8EL2PRPwLKVtB7r4YMk1xOtq8Vto9g7YYQdiCaJHIQ+8su9bXqDxX4aKZ4NSIX3DclpbrKtwZygGl1Defjtk+7sMFN0IhgEm8Gn/6QgjGHfpjD/jkT+iQNQv1BQXzuX6B6F17TzInXqb3M4g1TGZZgL0ykoHP++5W97PFdvfdjLmc+SamSZ74xx0w40DQLKPlSlm58wrFrpNQSDdFuHjExdnWYrWMGvg+v+J0/oFOGkNiX6MEovKybaXkkhLXj+Arv7fLdePsvQ0qZVI0OX7lcTH1s55yz6KKhxCt1ujSsqRO2V62P2eTi5zbmyZWaBoIGCTVfoOUl8HiL2OFHpU8ribbH6NKE2Wl85KAUz8LNbEsDKzeSd2WOXPXje21owMDap9ULBNT/GWVLjJ8LY4nHEV+fyPB9CSuuFnv7FjnCl06YB9ElhcRYF0n7Ys8SUzjvChzUtJQsn+bWhX7rNN/f8EmYPlk4tU2zZ51xfL8jmJEvHC3W58YQNwjHYExpkGAwly13Y3A+Dz2uzIH3U7lj6wQR62cFi6xKypOHbSaGK1odyCCFsXCqsI3XY5o21zN36tKFrvcKXJmf7JjXXZ909ptO1mV93q675RVao9uKzMZT/SJB37pHGNkGioySIcb+nBXpt5x+gwfTKlfaxDxeqp4WxhA1VAWC+FDZ+qb/d7MPHMfgIR1ZRc+gkocjRl3Y40otFWlsZDhr6EEVQn2moArZOReyaW21utl9PLOFb6++FBV61nYvKJXB38CERvu6W3VROXmy1VmchPP3HwmK6gEhOMBzsqJweQji4KeW1R10EgnjnTRca2XF63QQ3ktjDxcCpfqFpeKV489YVGH6s7d1IyF4Z6XYv8mh8aOv2QRWeTNBdkSg7JLL39Rprr9JKqIgUvzjrVEQfZCNrO/Jrls7qzztw2epBVRjEXsIyD/ssLwvSdTPTToeGPaO5l/khy3QobZ9wxjImJUZw6GkX4tlGpdaEmxTyr3KnTV/SMisXfPUwAOyxppLh52t+qFN8DnEZ+K8l9jFrzjq4l+Tj8iFiXFlVYu/D+4nBaPXxu+f/mjwnNLHa9LRlR/hT0qMJdz+lsoc0EVc/m21JdehvivKf6vtbw4GcpWNb6jLpEDLEmWyjYRGYe3bX1LjTUxKa13He9nzsL2Oz4vCz1b0SUUBFmlFhVsoEiITtDWR0uX7aaMPWcqiTkvmAoKshRVLcm3Uoo8XyiIYidZOaBFzYHXCVb/FqzN1tzAoovyk8GVdTCvNPPzP0N+9T2LFMiuP/93san/a/zVHy5lVUobS3GsGWlK7+i+C+ToZ6VcExlvM+ySZqSIZj4TGgzXOVPOyjmUTMHBNZAUYr1OwbVUWkFzKeGBixrbFgOD1tBEY+jHJWGeZ58Z9RkeQ+nBPNmGSYWwa+CxoNk/jd3/jRZK4PxJ5f8ZYMrfGx/74scRKr29zSSIeKKNj29VqWyRRriL2AQFW4roSWCIqMUAAkpa+j4vZNDgK6oCpyzB2FoHG+n/vqO46/n2dr89+AfBL4LhhSaGhYbTO2i3/l1+DkHrC/ke0xjocppw9z8ui6STlTiszvDTNqfxXnI2qoFdYUQ/xun9g51MBuZ0VIgHchhZpeAnMuXvCwhq7Hnwjp+TuWmRcwv6xILiIyazcef2Iq2PuUrtJaKWo2AjI57ONmbOqBNZXBtAFGva9f5eb1vJPhhMJ7QQCbG6q0oE09gVz92YaNbMTBPjrI/NMEbR5u9HBl2OdsuPzFWos5u0rta3zp/dfdTK1+gMoJS0UeUvIxYSauOIolYcFP40aiTGlBjcZuWqeiLsUBIUmLcR5M2Ebqow71oyA1tlT6SLSg0kat6MRl0iOz+1VB2OjKhc2kJiBjX4Xt1s1aQf2GQIXtBKWPc5yGQ8FXxyaWBvhbHYtQNUj2qXdnpz3moK9K+JPXCMnTWSpKJJAU2lOwRArguG45ctLTw5fV73NY1Vra73IXO086khO1q4/Bfw1wQJEcWv96TtoXYrfLnoWVIO+g6WqG2VtEtrvirZxlLDqX9K+Zqx25BAXWA8IqtoegY5EUsXet2dGe66TQB/tuICa6mhThQF7KlGLDg70fGktpVyddrgIh/uivvsmRu7PojgCuQ4Y0zeK7tTtNMq4BUMBrmttPtbgJ5zzGpEhVCpAMwhI9RsJINXEuytzpILeJvj3xiZoYFnSNsl7fdbMnaGZVTAU1p2Y9aGJhxiXpSQ6drIVAxqDJxdPXVC/ztfRpDfQQW/frsvd85ATmSTY7VFx/SHpgB6k3yWx4Xu4CZA3za+pJ4d+HA5va3uHjFS+dPT+c38Qll4kLHynA7cqTMmaIo0HyvtPR4+NFvkbdm9ccMkz0GmKz7kAVZpLuEK6Dchc0Z9oZ3OsWttYauSVNYwfXN0dxi9uEtQWM7UkaxQk50/QlqX/ZxxyPt5xERRybNtsz7w8DrHcS1n1+g7KWs419c1ZT0gOAYLqCmpMR+ynfDzgaOR3iwVUkfWyNgu0g9lcxRcIiY+eIE1D/YHk6oBO7y1p8zDwDpmZ6ENc4UU5vIpd+hj7AHO3emxw3FLjuE5Y3YhHO9XvoZHpkniMge5u7z6+d7TulfdS+xkfsQc6frYV2/pf0Hig8VtxOOyytTTyIl4mtDn7sxwRb4nqbyBR5qUQTZnAPZiqyll0DOetbWdcypeEuqRwdWJrO6ZNQuP4ajr2cH7FYKRDHemCqlfWOWVEwCIlNUq2ZfGXkBmsLhfzE4Kyp0HFO3w6qwhDHi6T8+6HeEPCR/Ch5R58WO25gysLutXhgT2gGq9ravRpRVeKeNEz77fnlTDKPplwpJjzwHtHLYH+gXG1hIP+1at1esa3lxOLFjN/F7DtHkR2XJyaga3MdVgwlAnakyhwverG01G7KtPkEJZa92JKi9igRWzHaHSI92PXz/8C6j8frRrpAfs/VKDqWhMoTVkNiL2MGT72rfgW0rkYUL+cefZJy84Qr0p+4bmQXYsVcKOFq/coEQle8xcojB0XinfymuVYqj0VKOWqPLOPzOgnur+89jX8a4KaVsmHD55PlRkU4puG3CSGThL9WnrbNAYdxJaANcEOuWyp1j53PsUyaEu6mcBMb0C16bbsXF1ndx9Ac4S9k5yUBUjv/IQ8PaFtNEPT9b+0Sc/vZpVAHiTJOV4W/O440dPWlcB2XClNCd1VHpUX4iVO2sNuac9I3b9OPwmWphziGUrMZ1imCqwZub5WP2QQ2FzNulF5Xv6U5Z+KpBWqHM2YKdgtWzDEpSB1f88Wc8ykTkKAId0Eb8MAz3mA2JaGgRLnMGJtOa695hwWYjFLo74BbGn2acCsDkvMZFxzbKE6AE+vOc8wqflqk15Bict/JuDBSR5JnMvaT5LGKYOQxSUg3BTfdqzQjGWYk2M973q3SkEIPf2f5OYBHzHgazm/+TG9wPs6ot0QKbBp2/RlJMQ5oSZEVB8rZVeGeAZ1tIyELrhudWXRdCVT7Xs5m/USKHx9YzExWGgu28sOklZ7Oqaufb4vf8yWxkb4k/wT6+c+aSCTYhZpQZLc4SEW2J9lhlVkWFKsu7zyUfGA58Zs+52LNooH7fdj1NjFaItjLskGJ5KbyiIuhQaogAZiRBCMT3v0zVlCINM/XvFx0wKHQhLVr3cNqFzGNODW1zi+pqkikSt9r6VoytvtuUT5lSo76rFUKCPVUFf8SN882KEvIldsa+9AvVyV/01awbjTZYSBcLfIFIH1Tgjh5r+ZlgvkaJvXeUd9fWjazDce0fO+rG+AERDDLtja6n7+FjPrQzZv+l9f/z0FEDWm6HO8YBSsGp4sVknjoKZ4aRUKOMs2WqIBGbEUvNG43KXIuDJ0ZY5ok0GyLbowOvDNSetrcYcTQsgTGQpzN9JoiZP2v3MVrhiGlSY84Ml4U0ClgHPSbsCU45YfPJuDK+C4n1VBbXTIKi256RKhI/z1CAORIC19LdpNkKN+7LvuP/RBi0xoWOVIDt5IROFMCPtOKg4iNYBn0RytLNR4Uo+Zt6X0YK9+B2EYm3GbaxGuCaG9YmAO45NbHPvK2+axVcFGwaQwSDCg4QtELWdQqNVgsUlaC0bYSuBlHV8//8FRAenAYk//N7C/6KwOflDsqcVyfh15Ugv1tjaeDJnYvw5lU7IhzieW9j226v1flvJdL1pcZQlU3oK29Z5HTOZysbdEPI2k10tXjjJNX37RJ6s2bYlviHw0YCL3+gXoOJQ5s3jEK/3T5MEr33h6ywiVAMHDhMMxPvrSy660aHs6bJW5iq8KrI3urWCXeSnd+MEtucS1pWTARwzy2SSiv61LoUsgsCPE19E9uGSdEYacT8JIc5dxpQjTlv9ubIDONVeDFszv000S01sIn9ifRIZsLqjcPSmFfGk1+55kk1FrCd5Rqmthvy/pfEVmXnS0/m0whjhRY1I6LCnSNFANmKM5tezaB+JLTSKYmvuh8fb6f40BoYebUqO5YNzeTNC/gCfml/cgg7mpPVDBkzyK3plKcOWRs+BRbE9b7JagO7youOooWQmcZDC34y+tdGH5T6jbh6lpDRYN8TXUccWOlU4H30eFHz524s8/9bAorDKVgHHZrjv+mOTYocG9dzXquEIlvNMJPHvD4M14frP7U+SdqJxNuKdE7hcLxE34HJjpB1X0Jt6gSpGlhUkXMGXmadATvwLFMQdlBOPeZFCaySMBryxpq0xYb2AEmFU0nbAN5/yTqBu45fUo2XYMDaXduLY2cjTc51HOdVCpYc0jIOcLczZQgVnlriNpYnPX5z7WZjIt7wdI1sE9grEnYhxUIC2eaV6O9X7Q9hqkbko0jVddgDVNOc5bkUTCvMOg7Ufc/72Gh9q6Lq6ayRP0u7amZwK6ksdBQ74yvugwu4xsoqxfYO7l1jlqIBjM93vBWATYrsGxW+9LJdmD5twjra6XKO6zRgY8vVAVI51sNxC/IP836OB1lMtOZBC40RIbphHGUv3KB1lzLlSlHk8+U3EpNxuSeRauhN1NqncX2ZULVTaS1YNZHSTcIGWcMYgjDHCt/EBbF02Yj0Brg379EsdKI3Fmo35Q/lPIL2DAuVd0LmF1NlTtFx5SKvh7MWoDuDk6hG/uB5dhfKuZLZd9EuHX6cK3LZUOebSQygu4d1/KEb7TsiVEzMPtol+44WUCsgVW1AyH1aEQDksWeVfiIki7OVYlubGmuEM22txhW+95ISs9UVuW2gYzibcQHje/SViRcMFxGDzFXKnGU3uoCj2k5fj2OGnzN2LzJzOyO7MxndoTnlDL4CS6F+YlY6V+yA5FjPjU1rFQc/LEPJbRapNbCyPDOCGsjGvYtk1gq5Mle8ZJuPypjs+2HtUdh+2FcNqmI0KVvIx0S+jpSfo1/uhREMmWGRDKgb3tl7wr3XyhIQRjaCXl8e/IUJH3M6OwF6xnHlI296PYAQTz9fim8poVa3qlPT6bNMGPOxzaR6TYSbF2FeXnkP1tV5DT9YjcD9wKP2oldMwVuiWvn+cqGj37kppjGpNjgS3JQ9B2S+PPxA8Y2c8qnmUxIM9wcUd2xh7LuFDmyoPOzhx9rkey+smjDj/LPHY4Oli0iQeueRDTUzxSCnuP1LhYQxEqFVabKFyp9IO3p8PaJlZZiOR0x7AZwyYHQwB6toVP8Q9iFp/YTc03TgbEzBIisbM3sLYJzA/7/eXli+tKxzIlRKeHvpeF57OCS1y+vqdXEr6LybDw4sSCi1QF/mpHOXiELNc7c+H2WcEh2eD6O5ydZBDdxmYL+FnajC05vLc2cDx/f5RzG44HFPPNW/R30HOa7sBXxzOYO5g8fcSt/V5EcS3yvrW0zPrnesTa0T3Y44rroGi6Mff5vmOL0K8RCp7BRyb7r7rj2vqrxJhcNdOBAs1+Rawk+3a6mRB13UYI3KIEQtaQyRQRkDemn3APsGqPR2Qv6picdXNOzZyfmWn3/Mjkk8E1coz7W3ntH323ycqfVRQ8OfJ8KWNt25FCKJZTZlJJrQHjqBBj2N8O3Dtc4X4If3AgtL0x/X1HjdxuUA3jX4a3e09Qhatr46kmDeRt9d0GvLjhkdp4zSDQRWLm7o0gHZo9ZyBDHaLLvN+I9Qt31J1fPK2X3MKX4I+svckrfNidKgt70m5MmMLsAY92VNKL9W1nCmjlVn3kYzmA/KWZdhg0auGkPq8um4QMnPptqH3I72BYU7Jy7cs5W6l+oi54kCmKCvUOFz48wqZ2YGKW+m2OEyJUk2gAH8/e3Ho3FopGUEkiTgFqvdkN9TnttzQrrjEWhfGE/xWavxAUKxfUYqutsnbqK5M1Ow+LSkmzqvqBdLMn8DJdnGwXU5B7sZ+HhuibGbB3qdb2KgdB941ooIBLHjxJnpuOqFk52b/Z8m65e6BaotRIbpq/wZm0e7yaatnuazB/rzciU+56ITlXVZKbA77txdKnZkOZJg+umEf/TcOeFOE5t19jmnuEiI50Z+SFKPGhfMQXvC/7RHcfGPTOkMTU5v/3p8LTyKxwlj5Hs1zeOMhezUkfwLuEX46cyv+IxwNt345AfvGxY1E0kay1CtZBG+3n8yAisoiF3GKNCb6NlBPoW2Bgf4wV7j7qytNTZWRuR/dN69U2G5PT16qdd0elWks5rOnTIfvFuDooZLieVm4NTR31W8jLHbylapdQ6u0l+KQ99abz+35AfzEH+XR+92RC7VuHjPGf4dEnYstM8ZrOpy8yIXI4IL8MAB3Iio2D+3lG8pO8JHOQi3jPN/U5/n2lHlP9L8ElGXAH1ao8FRbz5yutjA7abxaSrLI6kiSwdXHap3hsT/B9yVXnDyrigr97Z9wONywnpAmnxvoPQCAloe/0nWGpUJdXGYXJ162kelGPqPc8P0cYw3XqRsOfDexClpTVkFboKmFFTJmyyprwuoaoXy8ZNlfqlHXsdrIK2G7oBJRuaOq6EPBnO2u/12dsNIE3oCrWNwThOUzUVyrg3KECsA7TGnERlefb+i7C5s6F+xd6vl2O2ct2SRXDKaGP0+dCxXs5FD+Chy11B2W6mb5WgPO7bi1t9UkGiJGlpsT+x7zUM71LqFIBzdFRV8psk9A5jz+r7o4mESy4etRHZB5HyX9wM81QH7hbMAXzFWbELtuuZxp3mF/LcNhgl0DflPjZ670lllE0Dgl/xtRANgEB9YGKPI2jkv5db20H8XJvlELTmos/YkIkb0N0x7bQN7Nhi0QWlio42/SPg2oS271OrFevFWgnFR+oUFK2NPVjtze9ZFkZY6nIcy168bReV5TtkE1ZuWov3UC0RBaRyM2E6DkVzdSONdFJVOZSXoaeD6Vdq0tiIl28Y09jTGkjWRZ0DWSHAc+EdZI0fs/XcavQsRSqLB5heW2zuys4rQeCY9Bn0J8dI7p9aGg8+DTf0eaW+FykEXGUWS8KqiXeR3zEd35CYKy5WEATRwQyt3Y4mwXALaQama41pNF0KlJqrRmkiI3pa4jxnsUB8q2dzxmcjt/f2K900gab/+PRwWEpoB3wnqXrgKgcBIw6472jW0DW5naZB/uR8RvlbBqX2M1rGXt25fVcADMXl1LdjlgQKPH/paNx1gqKvAVm3rVKMCCl1FrugAw+zxgL5zorcisV/M3I18HgM2SVWPZ8XB187lnA/ajq/+vilw64dcDMTTrfe9OUPVvNx9rpshg2Mhepj+21vHwwWEoAB4RrimQRUaa5fqEm3LuVZCsor8/AFpCs4QIagMrYpRRs3HNJ06s9bBzDsGHek3JurjfHWcBMJgE6M8xUX9XLz+yq6szPg8qmxAk4aZcRH2yBrNJTQjLfqDC6T4y2dU5XmAe/PE7mg01e6trMwuzyyGBMUSBT+utJVRXRapcue7jYUvV7D/AGBgOAYTNLctrSijQnN7pd/sCMOrDTJTGIbYrgwfHxY2Z+qCCL9MyYor/geacYBjGSwI/Zxbd3NGjYvgiU7vKC09UY63pBoKT3IPsQhKSdj8JriQID6M5LkuyyZcg3ILmOizxpvcJOR8fRFn7DvnfMlG8vzgcjAX7wfaiJVUoB0J68X2FL3bhcBEjx6Ip4S/GD6EJpCbNbRAYw7KZz5xf5uKpIJMa9mne4/zYo+ojujEZjxz5ceganEm/SFJWHPs5B9rXNcFAYbkHDG25+c3whzkXiSOAPRWrVkhjERmj3KW2nfFFwUfaXB808F4QNgeibliYV6iq7MGNMzXdTGyA2eVHXscTVz+0L6raRlfeWptIasepEt4knUFav2xmnmfq1TtU7csRvQXVUW85ZaddtqNt8dB1uWqmVxBof+5i7utNXTqtvC74BXQ7YN0miPdIN8zlNhakxWcy8YqZBe5cwO4uFUOe/iBzhn52hdwf/6GDPPoBBKBq/YJkscjjSlZsaFmXlgihWnaWb1ncIel2f5OreuG9GJJHY2XkPIBvEDgyeZub16UmwkhDpW06fF5wW2pQnO05TgoY3hGhbPXuTenatKpeva9eKR/YyCy7EJ7CN2l35tdtu1Ivk/QuME33Q4Vm5cKiDIDIy2anWIQXvvj1X/Cd/06AChLUQZM8361lA4VvyRXXOhaSagJfCiQE6OQpL+8jv/orTg91pYHuaBQvgGwpCzoYI1z50OgrYV/Ho6KW5RI5OPmrbNYeWYcnTpbmbPyldPUBM1/ftYttPi6gQnQxt9tB4uafdNylzJp5l7MHq9MrG+u2ZDX3nUMNNRGAvL4/vgofX2k/9MTrQd6A1Ul3grUMh3VqMhoLcQMGRxXWPpUPyt3OcqwqpTeeUv5/1KIx+YpkMuicBfDFhyWXDMUc/9IH/4DhpKWHEb9yG3ZzCvuk2lv3klZP/vNwrBdn7G4lIVU+uaS6LLE+pWnFM8RoE4murllLUvzH/VgC+uvM3+92ppFf/ymYi5Bl/M4DotP5ty++6JT9iS9b2PtZvVwtTHCI0+kFUjKaCmkP08j5/U13v5CqHWZPsQXRcywy8WY7NqcWPjXivOrs637eh0iAillFZ9RkyZr9PRhsbMhvfb6LL5k/aJhfjY2BDW3t5s24eU9sbkjeWsvWsrFNIkZa9COoWekHB5JGXIZFQxbs0IRkrusw+evI59R9XexaAuH9gBB6CetQIGvpgYYxGbbeY7qgppHgkabsfBSQzcgWrbCEaOsULtl3HhE1kq7q8Jw82B/wb8JFqIOdRrqPjdaBJG5DCf2WrDZFfhgfpdXS+yhVDZcktf2MnGRqGlPdugs32O1v9yQVE/In0IW7BeOKmeUOmw7YDWXyvV5ZRrn51LGuvOrkcLzPwBOYi5VdH+LSMgDunC0Ru5msG/nfgo8yqwl3xgX4vgxeEOjnCO1+BjVDE3/4ta2L8InWsWWBZglSu+NyA1PcPcoXQeiZrBHFPkTjrtvNNHnjGobyDwaTHyFndDldsQJm0kcNw0luT07TqYoNqq2I1hQWZO3iGhipLzaNp/qrMS0ny5aUa1F1KTSAx9KxMoBZFpfkBGpdgBVwa7AO6f79ZMIuxiCqvHYT0kTfIDAuT+5X0QiSeXb4LxD2AbVk+RfzK2CvgW1Dq+D2cP5onO/xH4LJjKacclgTWUHuNAHTWJJTldaAAIvrf2/b2v5+8aY7FbAL8P2hDfC0N4Erckbhhqcn3N7BTWxyozRK9r9s/141B5qwjOMqRyFXbY9FnFJg7hi3vOHmDbLgrODVhWM1m1WGcaaicfKyuArlZeFFMdNEbPWs3XCij0Z2qZ7qdMbUiPholqSYv0ZxZ/h3PvUKmJG/S/3eutk8ZLwAqaFSMS74rdJ6wTiN5ZeXUMdRJihnI5FtX8IRdnJ4TfXWEODUBnnQ2d/cQc8P+3+74lrH3pAfCvHsc/bNY+yB05oFeKI6k1LGpKdRcfSqbl9CcI/eNMvMidaNokN0HDKS2g5Oo8i0orF32yIzCgDHzOpEJIq1jI7NMIsK87UAncC89rE71VTUmuiNdmp5dJ9EIb9GPkgQOBay2C309GD3rN2jwg+EdC75H1LPkVY2kufiqvlnUA8PQCX+tSxFEyVvfO51WvXurPi3W6hVZe6YEFgB+l3OyBCz7SxzXbVIFrWFWXyIuaPXlxTYrSgepqPiXeNkvsRDB6s4e0WicjhqttIh6N9godH6YlnPEfVCdjICJ3YzyZGiBPqzIDSOIgV3aYpneeh4K5gbpBdhY+c8DQLooSxfZoNmfe+wyaHUoIQbAjom+Zj7/8R2krqGTmrSPUOsaEpZn0BJqn3pqtJWE7G7cvrh2D+dotUv3dNKC/s2cLSxQ5CV4MKPd4itl8oB7Vrs78UyBDf4p9eDZUelVYShiBZ/WM5Pg6AXK/xEEzMahnOY5aiCwSxrWK6PIpb4RvRxf1ntISv9fYtoetIyeyIbV3UOFv7ivaONpDyGWYR3R0Yvgg+DTR0UJ4WTijEe/4q3FUGyMP5GI6786DK4KblGqogUyHHetChCkiyp9LCEPucAOlakS5/LxsRgQThFsqfEuMRTmPpOs7ouoU48l+nsAIWmqGZRYXQHvPC9wnbNUKE57DFflevGd9j41IAY2JcvkBwlVVZToNB/iex5xEZCCNuOpzAE9Ki0mxGD9wM6LFvCchMo7XNkv+mKE0L0d+f20z4FfWBwW40MAqAIf2tq6Mcr50iZXq6VwHwONCPsrXImXTq3d/67cev3zUF/4U575uDNvsSKWc3GP34IfotgwS+gPBPyqceQUiuSXJ4cYahULThFvjrghaNtshp38hQDc18qe3bylh9DcgRvU9jiNoijZOOnW45bP2WDTUTBmJhSh05g7chqFC50cbDlhjqzwbsuNe6+cOvc1+D6NS0RmhbwXXDrMtEk4GMrafWG4Zk3xh4wWhvzNdVrzypqEm4VEJGK2jWI+Mp/QH03gJzIZkvcDHzX3b/u/gX+DyUlK/f71Kx3Nduz62tQhmj3FDHuU3qyvkTuUmmDbhK+Q62vqyRUl/4IUrBLesspqZE1WeHqrGnCUTZep4MEb4bYpHyDmSfRtVfpOwyOHvNV7LLBf/fs/r6Yra7ci5uXw3WiG/M8ebVznfecf1PGkdcs5XZyWHryqoUgqfavXCGsk85BcLx+8MN6EEL/NQzmbxwfAHj+peg6pViTftb+/XiQ9zYsCO7zS00OlEoIQ2BdliXFvcX2dRArVxg7dK9vVrb2OJ2rwZjC1/jnHX3FQYuCycSl3lwGrqZLsMRacC1kgpCpQZHVUYCWHRtXYKSO+oRd9pGclZogY7PK1VchR4a6L890lxg52oAZ+c4yHdfvA3ttAjqqGnQH1D5RSlMit/dNSL+Z7FaADoRT4DFITJCDP2cCgAdAAoqBYJG7bOWDcHlcMFm4YBiBoHgxaJFeagP8de5l0b1DWZVGfPga+VTXYeycroHGC8NRFDQlFROGJS1VmkkVi57TYBhR6I5etQ3sKKuvm7tMb6v/Y291zcMaUB5UxZyO2TNLU21L51VvZ0/Cy9JWJxmEt06YzzQTZT9KpGxib5hso5wq2QRk7HxruE29n4SrDvlFB1YWJLj+eXPhdxtcWbF1dN93d3VHXuEkU16i/lOmlDxYTMPbO6ZSAABoSJvHpLbz8sQkV1+49+Op/ryhMu/8RfbgWFrTD7NgAeYW8Ty7zZ9WQP7o/N8Kwdsuyzy64//vbfowkB9WhZueHVwSMhRzLcBwsZ5e6usbNDKUiWyfmwtOCIU2rjOEohRhN5GtzFTugrMvdexdqXtio+Vs+BdlA2nFB3DW7DmCDCvq7uWY7gz38OLy0sRNmOlOddHPs+Kt7AzIOEj/bVG/9GCeq1zB1scAiw/MElVWczmrLVQSVAeNHdt9U6voe3gQRnWWwcqrnNO6Hh9Z8wN2rM6kKsDm24WrcCcyM+NUe+FG2EJ35DVuDUu3heoHJAlhJovaCs+SMo7KLOwS3sQgrJj0J/aKc4NZ8SqOCHNQH7kjL7ETKfM31o6U3ZGR+eOQI66aoQAYv/Yxu2j1czPDI2HbVXa8rPejsOFwyBm62TYYeiLH08+qK+PVWBBS7xIJb0xkreHYvbj2O8jyx3iyS7sELOOeYLa03k1z8wtx9ZkkEQK0cuc9f1ICjB9oL7V3Dfe9U2cDaZ8xqQhqO5m15Uwg0DUkCLziiXtO2FhevhXeJUYqOZzsYItqAABjzzdx7HU3NUCyVAxWnvEPuqNv8uvbCPCQXECtsakBrdHzAMmpmeoOtc317FUMBea15Haivbxncy6souc0KfGE02jBGbAW1GvGJdafB2AdLAV+ib6QR9uQX304E3XByDoghsIBkz1xYKByIsEJohFyz53ftec7LhFEfH3ZO7fYgu8zFNAZtDPMKEXvcKr6szYquuSjatH+P39oVdLevEbi7THrHkctJ2N6a2ETWo+trfJG7gQ7rTMvuviHcCkuCRgc3zV+UM5vq7uNMrStPAhdZorVjbgijrGIKaL449/dvmv7W6PdDiTqHuGJoLmh0yhZgwst9vgja3/wf5cwM+x3rgk3XO/t+do7yxYL5nWOLKtEN1/l5UqD1dlIe8i+PCrfJaMCR5KLjukd8fP78dyaqNnvWOSLeYSebepvLXY0B2FXeNkEfXRiVMx3OJWH/UoEhraxQPQMcR3yWAXqesPCy4O84RN+wFe/+h96vOKreLGvvKws0jC4lhDC5C+ltfpW5tg7LMOnTBl1jFFaSTCdgNoDA3hCiST3Af9afVkXcBJCthljQ9/vFoykO9lS6F4lVXuKUWj6G25Nkv5XjG7lrno5zBYoL1nRjDwaM7o9PfXKeeg/26bfDkcZ3x1woWmbtb0twsD+ThzVxaT+WWo6Cx4DKC6YkedEl4696GjnFthmiPGhFz7WKFbRGMVoimN2xIA+ER7mRC//8uKfjuwyyZ59YlFiqaU+oTywKtsj9DAhvHi+sN41mxYe+aRkcKcmxxy3ZtsO1N1pVXhQ1/+7MOW4vm9d8+PU3m1Tvn8VgJR3QHzkCNar4DwkcM/wBFDrUkegkpnV8mxoqtlg3JFZ8XZrncGZUzak96j5iMgyKrUesI7hQjC9PU5moWrEsuKIPftcPcnAMDeK21fWeeFcl1foWSx5VWmHaYhT4g9B5pBGHIBbz8hYLPJzKD5kCeIXc/iI6OsE7UiC35sr57jHI8Gj7zvBLQsoPbcWyhs2PpWPLY4H/mBt0x4DcRfFWq+Ce5bIO8vlwSwjTktwz3FgpG5E0PyIH2mCDAjyVmlsM3sXq6jzNpG07fNaJe0rdViUT8wt8FuKUaAr54xsaZwHCC+abtMPnshL3aJI7YvmY36IBLkMLp6C5z7HAdjCVaSBzNB91X8V/MLdGg7ElyxpLy7fWnGCbxmW8uX9awRyrB82kcNQ6StUTRGMUpOyowf0sYYRQUyOQMkOSpz4Tq8nZT8i8KS9HjevgFI6sWm3UiMYIgvrGRA/OJq/MaqaM+mJCXvQ0xIHs1IV4kJOfAY3p8z5Fqfnwvledc7yr/vLbBufKsCFHtgCu33NkyDHXyr4k87ZT6eYuJzDM06XfvA3gXpozyfj+uZR4vbLjYtMxc0hIUDMzLJEn6EowZ5GsMV/mWhAhletHwcV/ByrDYEOkQL0AL+PCoee8blrm6tCqUzDUqeFvYT5IYfz/Da2U12wlprVZM7tqTSUdsft1or2nh4caKh2hNd9B1HAV1vMuHpISDwlqJj5zNJ/0oIL9JIS/ts3LSGG0lOY1NpgrMO8E8R+oVXymHwK7huqaE0eYGFkJaIQnmTV/7AFXAlZBRQZGOJDKC/kCPoS+sGcBr60f1IgqWYGgygFRm1xYxijVtbYUQP6WHKEFcOooblEVtfeTijpJoaVnIzrKE6vnN8mkQmG8kUNLPSzbUzcsCNd15JGVT4BVxt2/Dzxudfdwg6iolbMLDdkLH2pj66Fc1kUmolb/b/8H4o8EnCtJzn6T2F1WE9LiVMGIcHb0O0WVEIhtpcVO6foxX1hNYCOma06jaJ/pTbvBM+4uJ9qwwbDfSmBI+at3MJBWfXBmmFCBEav2AjBAFNEzznwc2S15T1Do50h1I8xuHvu2l8hZ7mfzGEZfsUT1T5ORbK8pLFC9/TwUtIg++RW9W1rhW3piXzsfdrQ8UzpzvsgIa+tDcQ7QzoI+VDrjCNgYGeNr1KInnLHAfCCI6IAypdCLS7tMno9+/5rawfz9INrObXtrOA8BjWKKWmsxhZr6urjOUprRtgxeSIlxS60exY7PdCQPgiX3pXVxHODVY2bDh/SF5GnCg1DxHJ7RwOH4RW36E70lNdtfaQcA3WioKS5/2eQsmZMH0o2cetLZgl/0g/8IWzhPPIVjeBuqSZfuLxbm9bMuyqO7wTsz1DhIF4mjbT6ygkVumouuL1xoWZLnFPgvc+iqd7kTpJfCygvkdNMlT01eY2NYX9Umnjn5rsHDcDFstRuMCrUris+lfkUthvg+g6Xdk7YW66Lq8ZlXIV1Da6mPArL5MTkRzDKphCmuCxVQU8ctaOC6ByxsaL96qMe75D/ySS6byx3BpJr2bTD3pP0nvs2ug8jjpdUVMt4hlABqGJncPptZ4YrHV42FkPwg1zD1V8q3nfmxHTYrcFT/2wob9z0rGCsUqsLDhioOV76pxnu49R4s/8KaxaFxa39FQyIhVkEy8nNe/UUYb8VTzKRsEfqladvgx979+kRbE8hbSnhuJ7owvcjsL8jfpf0VS6Ie6Z2tH1RPLxdnR6NkUJS+pFyc7R8XW775qGTYMZS8zPBxu5oV5VZkP8aoRCUV2X1uh/Dhso3q0/azckVDhHazwf/jyZwUV9nSFUmDuS9Z8CVBJ+Br67WGa4B+0Plu8LkAA6nxhqDolj6uzI1IvVdkl5fsShjGfzjXe2/r5P8osW88AvQeOdskGYj4K5vEv52Hjzk5T20SNWhbfI6gptC7tE2dkqQ4rnNQr6ZwnR6/4injFuhaYpjSkqSduSAPl4zwovO5SvFTXv3Wz2ok0jfgsmildixNSdPlZRT+hXyITpK29ksmRHyFStNZXXTT9jTC+OxYpez/wZIfLxGH0J5wI5ffRBwl75mUO9qKdCZTXmtJaTTJ2H+TQLLoF8YSDNXgUdpG+mlsQts1VnDraKZk7by8/YRMUkvDt4SpFRieHYp8injiMd2+ANqhqSCJny09q//5qmX+5od9TtGBmyHFnUcO0RU0+rkEgQGK6Tm3rSlpDOqU1URQmwlyk6Xtr9vmlWyF9h4HgBjoICinWwV9Yp8gKC3BcveNW+M2INxs5/i1bFQT1ZsOKQpDUV2PMl0iz44nJ5e0Od316krx+hnEcCqLwiQRZork22dHEj7VVKs0SMovAkbXR3VlmLOg99hHIrNs0mRroVhczYBYPgXJszk8kEkXshEUWiRcxVSIv0dCyvxPjixs/gynood/UVv03x8JXO4M0pVdwAArWwEITk3WpYevZomquByl9NMkV28qJcJM36AmopVcFfOUexGmXcCf/7STvRjB94Q+s01nkCl1XHWn2KZwBpIlwXX6MIDN6OMxebypfEkDxJ59U4thEgltYOPLhEKI/7cH+plP1iiUrTdmc4yw1DhktoPTvAyBJzzP+f0GiSk6kF8aNgelHqbgnSQaUXzqaSgiF2HPW0ipblKxmYiTeO5GaVStp21MXmbDr0N66JIXupwEe7Kg6I43MO71/2IxNu1z3VhWN8OcQTm4HMYEq7+LJoKnwZ6mKtYviwE9RF3kqsKpg4zfTXVyZ+xeY1Vi20QMyrD2dpCzTUCEftR8TB/WaQKRtjag2faHPZGRamfPDKNVZ4LCAaDD9CMKQFar/ki6DY0pFDqP6AONRM9N5Et/3QrfQRdL+kUA5OFPd1M9p5AKdgPJ3E02sVgWhZKOKpB2P1ZwANurXpK2CVgqAKDxsV6cCow8qLMcDJCPQJEOf5cps/POS+aDQW4Yj7XToWssSaG31pcWRgNVxJdXIZzUsm/A+omB/BcNbkj7IHg0lvt/c8KXEqCLOs7mu051dfzT6HQ8Bfv01tqQkgyzm61UwOSojPXca53wP9CV+TsgXDBL4ACtAtZXmY5C30JVVq2tT0M4iu+XKydNgZQwzXERS64rCku2nEoDYaPIhlXr9LcUnKxS5sLOoTylqKIHVyrMqMbyJyjck2faHJDDop1Ir5Ob6nSAVLBKiw6T9Oa+khzsKNpMNlEQ4+0L1AmW+OTwhxbVny6CDId/BBxHRIiwodO91VdBTj100kWut+4ooh4RPax0hqKJvW2H67pCcB4RDFLSrC0dbZps13cRq//tSlzq4FPbXnKih+bom/gJ00sB39HfMf20vzLX9xfJvkzmRogFsdGbo9+Eozym1Og9zDwV8z9kbfXO5RZOz7t1khnJ6UKmLmsxEVEtSEgfxILTX00Uh0ZqYpH4AphCP9s0FuTcwGFqekJKfnNTMEYm6vKuywq+myTnBn6KwrZUTj/janudyNc4dCAiN+tW3B+featg1IKuVj6zIYv25uU2+tLTugact/SBqKj2Gc+jM2rA4/xvkLYdhTLq0P2V6pD4t4XFQIeoK3LEmQJHtlhR/nT4GRS0+GYvHY5uFxGkjY+tb7x3SJv7poOOQFr5bnp0NO//C9kZLRr9freDjLO0MstzYEVPFGSccxnSKeFtVV+KqI8gu2kN2qhRCeWL+S/R9mv+6F+qUkDI21D1X6qmFY5dFD3TxWesFQKXtNLdoA4zh1ceNXlmpkfbCVgxj65JGBN5/pOSculgFo/K6E4KHiPIYzNWHQBM3UuagjUtdkTwQxu69beKsuWNbhxUvzowjDIjvt51k5yktRmS+QKokpZDli0vXK9vRq9OSN9YJOL1owWSH2sFRoXGREqAiMPRFy0pXpDR5Ve0exHS8t8gi9erF3F4f6RYPG/P34dZ2h1YOfbC5iL3Tqh51vzgzmMoQeLPQ5TIXZ/B4+TNOLgnoqtKchrnXGh86UoV0l+ek5ChXdHsWmRW0v/Au1fC2Zb5kYsiH9MPy+nGNyfKDP61PIRawkH2KbvF8Gl4ssJTdP1Nf8B7gcZw8ESkhKWTPg3AF3WAVKspE2RVsB+2o6lOLZaYydQ+/EBHPfn3Rp1l9t7X/jOWOz64SfqctPsOdJIQta3i5ruCq5P/cDmAQx7lBovvphwcnIgS+D4LdL96r6rpsAnVgAAeE0jZ+OF639MO0QZczUkQo1sYFkS2tlzZZNWZHViBbrTTF4GleoH/610TC7uJaVNhsM3Tiq3iDdRAD8OxEBKiZTSlnAez4oxbAoxrjyAJ3XWRh4tqxN4eYrA8u/Ad0FFljCq6OtCiit6t/Bf1wo4xV9ZFSCT/+CT+XNxR32xXydfqqFBqUUDI/9GfJa4PedvQeqVruHrJrql4UC+Xn9A170vbOD05qA9D+yPatO5FG60Xk/KGBzYkj2n6hzTju42aH1CXZdLMeIGxAFcGX0Z/NLM5doviz+dZXgsEmUTCRVmu6PgHF4Z+kE1cfZerA8EHM0bL9EyZ0s5/51nLCPsMRATefD01D8IrhsL4Yw0pgBLifPEWyhqtTg2/fizdluHOtrmTpYOanYPj7cRhdO0uvAa57FpNVRA7IzsKDbJPHoLsLCTMzzBFTIszYc1e0bHWpnEMKV7ww5DN6AdTV0TvANXL00UimHNogZsLDU8nmemRKTIhzPbJlqdXt3b4LQ9mIf5R3Zerf8AtvWtNn7iRB1TsNBpoiAYprm+hTH2m5eZftWbA01l3BaJwzDkqK7XWu+80qoo3IAfOuIMZy4xsBck88dFhjafWWnc5GpV0IUs/8tI5orWDjewK6/ar+YSsV9tjWTyRDZbqpBhZTgsFgeUe01Z1+kXVRHWKKiN8+Oc9RwRLfR9u6ObyvF94V5XLVzdhqSACwBA0jNcaOEItxWsT5wuDQGeiZzlHb019ksOhydZHsoBTSw1vDFhBmKdsduTNxPdWduluWzLtmutpX9fMek3L6kLsuYK232/vXUU2x3pj4ODW6JcNAGl0qVrIiIPnH9ARawy9Hac9HqTr0ouRhBgyQm7Ip6YaeiO5q6NNTc+uNFWF/PI4b8fskl29zrnWLFs75RJTuksTY8W5J+3VC92mERhnSA5DHw4qqDcZb1XsXUVq0FffDAc4doXyBPP8Wnw8KWSpLKNY3ybOQ+AGZNA2eAsE1oOSOfOcHvks+HEHUazXdAyxA9F+Obd8AlJrCPdLymyEAoFe5SBX8zwuW0dRjRpOIfJypVFnvyiZXVnr61Fipy8PprdOa2AA46gl5W/AwsYPG37SiXlDQ3yJIVrTcoDleWau+z88Sl24KXIcjKyMCGHjt/7auHHHmpr+Q4RPULC3juw7LG9QuRl0fv2eDHuggd9aAXhENlB6iCnR2LWWdWPI2rlFks4UhYwKt0M++/ohiO5yT9ykLIafQ6GHHtmuUuwp1N7YqjglCa7NJrwt1c7XwvWsI71m08ZIr4wMspb9FWdeqV9Wu4ANJWONDvUdOgfFVDpjQ3MfOm0WrGkKWOc222D56mH8upokAxkjUCKqbk6+YsHi+PPGSpj3heg35997W5nDbBxiGcGpc/BH/9Uk0Fm4I6LLX6ngNMot+sIUHNBf/G0y9VYc25Ii12ki8fjcPqncj+bb8YHwbBfTExvpSZEh7KlI7SA620DMglKw7Ty79ELzmKxL8uDFKaRUnt9sOmuwXEShuOdojssaP97tD74t2I3DeE5B3i4PaWLfblYEjZoGuQ241BZHnCvbY7RxXOoaS14ZM7HDqRJhJpNpbKDZXzx8XyBXXB8Vu7oOJw9jM+rK4xWluZZEblcJljsSPxYMgkglAl2aZNIwGeidpLh7eZgB/fzRtXCYfBSAMznpjsoHKTUdNxBmz6TVqO22QK5CDG9XFynzttA+2NOjKnOSpaKuaaDUdo+H605z+i1vt2FtBhdu6LzgrZr5vZsk8wYExL2MSxtW5OpZjAtO1Qub6gwKReqTJDX3x8KoX/OpNh50OVcDHCxbavMKpCyNM+r2KTWGhaT2WJg7ipWoS/J3Y8MkFBdJ0iXpA6677mkx3AuFqgfVlcuzDONXgieWnvYH0rdJAgVC4aZsLsPm10R8XmP0dSIrwWT8XlvJ7PyISUgjbv1W3uWt+5Zl4V2rqWWHRupqozz8XoMzLH+MKLehO6pKituCmIVFV1OTjvEK/gYvIrFI1IYyrZicw6eoW+N4NbGqs0X9tcVp12iskeQG8FbzoQQTpIWU7/e6v2tNkxB/o35Ctd0pTynwiVWNIZzF1RV6fumnYBvRZBOP1t708hgdrRz2ZyBCtGhEjl352cgptI25DCc15GKA5eA1yOpcCrI88k5p1i47tkmj4aKkqAIrfPduwReCfPZBD416JqwPmWfT5NN2SsyEeFnCx3+1MxiBsBDiz9M1ggGmPzGfHx65GBZTUKOD7NMkQinvDac266y47NEa3mJmwRp2EALCj5ZEn2boOh00M1wT9XcqNPFzmyoG7fyg31wAoMwZbqxuB+QMLLbM9HQ196e/u1vAiPUwJvDs93SgEP7zQ/VYZvAIwGfku7bF74pwZpHGzZZaf8viBMCP/DcY5UKPxf59L+PZ74H32wsKMJL2vx41Y0lKyRJOSnbU9eI0p8Shxkmwc89V729OSt9K2Yan6HnLX3fu+FlM946nOQqbTqr4WVuWOmbqeIsxlmGZp2GXuuEPPbkSp/n20X9VrXKHybogH1sXxkfuzzqmlhNl/bhNIJfe8Topb/KYzPDYD30A++YAHi0sSDv0A7IxIW0A43izcOIlqfUGopYl4249pO3YzFyXtoXdbDudGSJnR7GM6LszJROuSlClld09MbfGYXcGvS3DI06ld0K8fJmF9NFL1h6IN9l7g4eHnatNfnYfi9bWH8T259z5dXp9VAW4CjvCXtD4p9M2Fj6lsZJ7x3Y+iCmMw++cKuk2X7ZWp+Cg2/t+P/ievxU/k8zax41ZHyZ61f8O4frOJUlERHFZuy3c+UBKHE2/ubnYeivSwIfg5/CzvMYsEnYJGeR5vRCe7+69rCEz+3r4fHPVr4YH/myTqmrdzTrfJdM8ozMEntQwznyJW66ocJ9raAORq4eHoLCoPLVz40ZTeD37FKsqrEspBoP3tWux9d252OiDbOYhhXAnrrJAuc7XP7gkmgDJ7kC362F+S0Qgu7Bjuzq1y+59yIL78DO8/gQT2zRfeYBteizqtQlNFHTSj7268CLRna6HQVQsXRWUg2zdayksZ8l84YoNcNJPOGjZDtzeB1kaqkb96Zbq9RcUj56LH6prEDSF99YZpbN96U1szagaxu0hUuXQXkZujbrOSGPu3JdQ2Vh3y4Xf9GW6pZahC2KVeyEVvVwSYO1SSxxaLxO0AezrQ0lnFC4S2XSQjDXCcruir6aQvHLHkRzYDwLYBtp47RW0cgddi7iPFFP8mp97Qmfs0C/DcWTOgzr6J4PhZgPJ1noulNlC2zB0Dy4JiOxRr+qCaNNY1p2nyTB6cz00yyAFwkIZ5CkokXRiz1tJ0q9WWJK23vEurQkAElyzKUSVFQlczViChGbEqCh6WyHfjAfL8mL7/miuu7+ZG/yMR7OTrYhC1xv81n2BU5jYEJUh8CvpOhOdY9lTbe0V3wyk9GcPqqpXidr7Ln5tLEJ5kbcmBvCJtq4NE6IKX1vwbGv4Gdq1x9swrTE+fB0SbHJV5GmY69GthYxIyvEgjVp0JjKNOEJn/4lrMq4GZzdxYjBU17mRGx7Sobr3xQtKqEXJbbCWsNzmNdV3JHlgU4Ph3aZeVx4zUHZ6yK1EH4JbsXyN2NSrd27yaWTjxGnhmR6iAvq0mRst5LW+ptiLVUcnMzCVPBeGitxwu84GoxaiOZzLnBu7K4pKJWX+LWEeamt7OYp2IlpCblCo6tmE6i7C/DNtjD1Xntpj2yiog0MiAWgTFcxJ4vIiDbMmp5Kn82f8EuGsqHhIpRHp8EyDjb6TuNJtrwouCSkpPQAchQWGGelzjLYDv0TuSLKqnJ8owbZLnq3fn2pan+pMvmA05iC2vOSL8dFTxs9kkknN8VFZY15KJlzI9Sc4kUBdXWaDNGMMIHnvS8fmhRLhoa+5Hb6VRcdHQziUm4y1Y0m5hddw69eD9EYXW0GbmiE1j/JzbHXNqDs1DHkVLcXNfw6gwojEjI2o9433tnvq23ZFXtBwP5OGC4FEHVZLizAt063sbvR4smg+uLohc/c+PwShH5UrK1XaCJlYpdxAdf7ttgNDOMlKjdie6r20wJNIJAtzKayTST8gZXmenE84w5SMYw/0hVzLnMwTtrpo3qqvLjatoxjfkMatb7S5QuBVUEltipBU6m3IMVe7K50oFSPD3ECX6SFmNr2cR0yR8WM1yKm+t1v1lUP8az15y9ba719yJVdIRR2LYf+iSOU93LHjhcRxxzMrjY9NzRM657kZloidTkO6hCys4gWsGpXCPk8QZcxoN6aHAtV1bEEGxETiNgUPy3L4JgqceCJC2rXIxsQ8woOpggVFqgRcg82YmqAuMisjXgALsmGhhkoXE+6v/g5JfpTPktnzRy8Dn4SgIhGsFBsJJyu6Qi7XjLIJAQlX6EIPyNAX1O7bJD0DDCXKOhF+lI4o3dhr14YlFezJacRNFj4bLpunbKi9vBZc6W3Azk3BaMQSqmKbm3wIu7okxFHedjolhgvM62WWfzV6SZmd9EIMiqIODyTntGH3pdCChzo4k/FgnXZgRWV5KbeZ/AMe3JqKJOpO/KRPkocwk589QYriCkQN6nd4RMdBz9jjrlA1f3BTDT1Ae4mBchhV6h4RPzThwq728HKAB4Oc6/IBq0w65WcjYgvpj3ik92023Sex7A2h4LI7Hjd2vHtOgJ7qjzKoOheQoW6PC1Cxi1ceSISWy19mbka6n8BJTXpZXKLqzbJhlhQgP+amN7P0vSKMxS+UKpK6FCqc62qOSXqPFebBkQGB+4ZO7YXNrc/fNjeGmBlhfd6BfoSBPQot+RM2cnrccf8zLnOVn78hgY+ulWlslbXZpnp08huZEjYcYb2raoMgBjKprJMBGyFaqAa5PoMNWbBih8VvFkEiIhKCdCAu6Puktx4SV7sxC81iz5ZVEXsKK1n8T6gQ4aXp4DPjUfFw6PE6h4SOpicym4KWMPPgsmdVSskg/mUtmadtKb93ENrc4gb90KPF7aEIvdW6e6Et9zw2+9njraXFg8MHrsBtBHMb4Vex7IZNSLRDg9IQtRFfeTGEbpHQSn610ZPnqST8MDhAI0yb9g80n0uuuXnuwPfdG2Zg7EWCLaIp4Eu/+oQqp5O0juzuh/Vb/QTpBrWdN2Z2GoHxcgD+x7HqYesWxcRjeNjyb8TNqc2zTH63/Rh44KcEw/Ee2zkjvAby407+KyHoz5TwzQGW/rFpAmFyX85Sa9ui7UoKDJjVmL4sHa0QSHJkvE5Oe3msn+jQNnXHCvLjem2zby7+n5exLPlSpLPEp4qrSVZ4nctay9aRKMZHtWiidvkiSL1B7yxRKZluYzNiW/JCwrKfWVpnpx6iz3lwSjzIy/JOsXM4IsTL4eYNdz4n0fC9Br+4hty9/5w4o5qFya0HzsQuij3b1vmw0e8jEmqNVDdKPpM2h9032uXFjJ9oOjp3qit3zBMhsacNoutWqsFIiRgZEmNiBVZ3fWRT39LsFqvW+0hauOSp734/6BDFRXwyRc5soGy/GOsXFtYIefPTogUSpw5FToyK8tt/mooD+TQo0Ym4ocCthvxfDAmaIvB7qO1YHrt4ZZMymmMImw/2RhwZ+ftiIy3JOvvoC1J7v87//VXXqi+Kt+4gZX+8jt3YLOpopzysJkQzGlJKfrLfInNLB2Rpv2ZpeMDgQ1LvqzNbY2U1gjc2RP6Esmqt1quVco+nAPnJJBq4lc7XeY2XZK26e43D58unHFML3MzrBjEj3B8/NfDX+yLLo1rcAq8J4Dp4OfOkPBmxAcIr60MRSWyar1+hTK14RNEU+zdSQe/sNXfbQO35QrjPOoBofWfi+AVP1jACBTQ0lCPGRKOuPMswulhZ/DPoPi3k2mfLFys+gv1VdwRJUUW/VC1v2GfSoQmXRSTP4oLg0ZXE+/M4bnPQxX/sskiHordhOuf5z7/8hE5qreBG/JSqCxHE+j/Cpt5JYG4l0KKl106A24Jxxa+dRwgBJXxVeZIogqM8NHK0Hg83KOqsEQLPBYFs5gPDtu9u1boThFzFS417tUCwuE33EJPRqYr+IGPhDflfr9JkYIeOukehVbNAJj6aZRHDVjAKoDfnu/anGiSHKwpWAYZj3/lLOw6kgTKZ9ENOxrkriZw3jdsD5GCkWe8ROYyC68UHi5uY1zZRaay7tlS4IUjFflBxwyczfSFNUWMvcxtsS+iwas1e6cgS55stql4BS5/Io0NpfCIPxD/Otx+k3KzJb3IMmMgXHUfv2fN8Snsij3qRZYYGU+AZ1JXYRRwC2Qxo7z7Ud3D4TIf3ACltOwKNK3479S64+Bd6OukBMSxQb2ntGxnYZFucYNS4VdhlSTI8NN48OOLrkRrpbUFU6oOx1JVsobSULqTsB/p07gtCPfJXAY3Qmjp45J6+XxDzxaOMu4gjYAsokltq5ri8gr8N5T21kF3jCoPGTWlm/cUGbzvKtxExH7M1BZ75mQ+pz4/r6KjnqCW1WtCLcEm5UmkT43YQgaThnKYtTnWPjZx0idmgq1SVkwPA4tCjH80NfDbCJ020lhGDxwMTb2q1yg2z+jk0klddGiKbCPKd8TBFV/BJx2v5RCcqemcwreg9dfr0JWZFvWFluIRofT1XdmHWlwfzl9dPRhzySFdy37YkP7f/4N7oAhf98PVGJeU7G0qrYKXqP719OLs9tK672aehpWW440zNSENrvRDluiA1ZCInMVB8vXD87KTNOpEZXDTVOkWbuINz6S2Sm4Xfj3nvikqFEP2X/MREoquaQKmUTwqC8wAv+H543eOw97asHD21oCjLALQJKvgT2ETawjpGfJ0daJ1y1E3p7VlX96qqv51rGWvTNePqRmgeCL94nGXjigfPRJqn3mQXlZDEP/XecOb/oXBS0pOwgKizYicF7GrR0Ybd7dGwsqe1NC/cvu8i0n9qd/Lk0XrxSqrGgU9V4oA4NWY9CwAGr6FOttlGYPdcgsF2JyPuDRPm6Ks+dRmaA7JSAPbdJp9P4lQP7RWEJTGdEGnXnN/EybgdvMezgs7usH1xP8PVAAKYRZ5u8+Pevmd/Vc6wW5IoZCoznVTS68KkK4RkUjjb3Y0wG3+lHKHBSc8hD2ClRCb5Xy7e44GxXwzDZXG9eo6Y6zQw3IlwTPa8Q3j1hweJvJlNKF/gcJylDQ1JqmM2uGKlRPGrg70nIohbeDgPUWmomcCUBFi6GZt1Xkrxtfak+eX+iFX67yULs6mwAxgx8w2DwAZozbyFBYHng9+InKzZClHDitfUQBIYfYthR0PUayWhhxg/o6FtnT27RbE3l//I0/hkTtNWZ01hIrg4j7Opx1UZWnJGJYeY39IJe9O2tOx8nJGBq9iDKVsK2EuFKiI4R+NZaiJSkNyba8OX5ZB1tgrBk793XzID8wULWzaRJJxDlJ2duDj6QIb0bevagfGeyRm48ndAu3Y3s+PhUL/qsK8khnxdD899g8Mi/fJ08w/WiIdrCxJNaRG1AjsAgMJhsMxGMg+fhRarmla6fTUTo3vMeH0ta87XJuB8M6cplCyrsMpbJVdYh/tyQ1Zj/mAd835vxuhKy52PaOW+L/ueMGOdn/CofdBZID18npvqJ/YQ+sSnjzVFUXODLqo83yl3qqI/PLwKLhz5Be/GAkvdWS9bCmIuS/y+9JY5iT4s+xJuMWzgUCeJAte7msbI+5X8PxPRS+Cd8RVvTsZuCPB9QkVXc/1tB64p6g/bem8DJAlPlTPiYbyiS6yF3yU2LU7DRzny8FCMYmnXFHVUVP+B/aFmmBBWTvXDoJqd5VkHYsZskkubbmfiuhgk1+gNGorN+Q/nYcvSd0e7nxitnJfs4zYTMkzd2CtI5fLTn/VaBjMOOji6UnCXVKDNJV7VigjXLuvvGF/vkG/X9e9L3RgJ3b5Jjb1n7ZcjSx1q3/wjum/zaG+mO30VoOD18xuLcE7mHtEM/SOnPx8dIehzIYaUPYeGHQswtk+7vQOEtFBzlW9ZniykAG5sSlk3fubGA4m9mi5hyXsinNtqXSJyYdC5q0p/L7PhrWEK0AeI5v58dznmHu+6tV0q0+CbLfqDBBvOPXxvc8+ngCLGMUt1RWDRv4RUKrD+DrKi+8c6nrxH7wodLG6zHOye086Gq82WfeugSe3XjXEC4wpQ5Bl12EJUqk9X6yGlnw9ANqJoEat6cpyRbH+0px02BVlnunERa8MNN/UlBYf2l2uF9nS9X4FcykFhlhE6Yvco+L8UUEq325Llit2HBdOFIBHN7Krn3YP3DL3L6Gr05kG1UikYTwzLm/cVM/BLBtUb6XGdFhVZCqW767o3M/XFx+oaj7rOy8e8dS2NhLU3Vd6ua31WvkP25NGJkfyz50qt5AbeOVNH2WFlECGEpaU9LaSnl1UdchAJzWW03GXcgBeEl7aID/3hiZQ/P98KChGiLKKGAeC0qp6jVXYO/LhA//Xv99kWERV1j291Pm6ZEjzd8grAXFL3jn+gyvLKGezy4prgtlK4xH1iToqGkgTpmVPp1umZzFu5nkQjfGAZdC2ehSRUc4uPzzNAAjmQAgQkQZ+457/ZTlWFkytgCQrWgHaPLXGQ35oSibo7HnC3ieNRN8fG/zi9QiF095dLLwbUyrFVClvJJTN+7Av0CWgaS8xGJ/86DTwnGEgqF7yF+96BbZG9sz8QyH/iEuTPyafP/xzAtJwumn07OQrAHX7yKUVW9Kpv20XbjrEjt493op/8qf2jU/+6ii7bTlkKSPUvxC8dPtKGeFqSyVi5NWfWmbeAIj8Iw82t/nsfTj/xevcfpKvxPq3DZ8HCfPzPue/dmLMnb2KSq28WGk7VW0o236gqNSHqQ5WZ8hCJzTWcWpilbk+XuHeL7Z0EoHkftq2IUqSc6U2vR5cgz7bXDvIzKmpW4OJuLtgPmrVH+PcwaopGunlBRsFN5RV9edPd5X65uRUuu7V91CTji/fHdqdR3CCZ6KcsQRJaudKSSrqYk6ZLpzE4IK0VcDHS/doAiUWWm+aMG6wVMyZfdfJr9Q1SEtDGt5Lkm3OwFE/Q5PBIydY5Rsf1gQZ48UDTPBTFzcehn7t3NpWdVJMq1kUEzxu8wV1Y90lS/bWUZ2OvOUzaMF0FQozOTG/jxI6TJeq53UIpvFUCAWICFpIpmXWM9HfIDTvcUJKSWDx5Iw2v4y/7obo0wokplG68vVfHHEPkJqSNdiXkxrCMz0rtLykq1zWfIIuZ4108Hn0w62d+1m02mW9zqY9ec98hi7PWl0thDNtS8m1u1T8igUca401XsCJOHDtUiDG5eTTDAcedvvHnwz0tq9tVHZ1I9FUfRB9C5QsmG8UlvX4eVECmzNl1GGMz1xz4m3VRHS00fbVlZBliM/iQbC1OHOvMm9L/J64mAdfohXPK7h40aM5bvwYXI8DMqJPsp0u2/naUDERtlxX1HSGU9EnxMQGeDF/nwpv6JpJhdIgiKNvunNfZLe1UCic8ja8fclrvo9XKFe5I8kKRauHUodzNLdJo1aVuO715XsWNb7mbFh/hLzkQV72Znr8r2kmp4sUlzI33TBVmpbOyfrCW3uHQ6jnyAJAqxqP+QNxlSfTzKwYFdP7Xdc8aDlok12csEqTG4nvXDV2YzbaTfx9Q6US9p4+2xXlfL/D1zsGNrk/3WV53ltbssOeSbv4ZPGn3Sl7l8DMHTLcbKwQO7bRCVDov5F9znhjSWT5LO/fyWlZ7KCsFkz1KJjsMYpFQSXeewSFfx/zcK5d/8isWZN44UbYhjzu7Mz57gVga+XsZ1eMhVs2aYx93wwPvR5Um/d+NNSQvGKwg08fH9wdNLdC3hIkKPhzlVFzMBmfdwySylCKqhX1n2U9ehjkQ89txsN/CtiS4Xshhy/iu9NkbM3+QsNiIcG29nFT0AtzatcIAN6FsTkhb43RWjQyg4t2z4v2gQ1W3f725L+XDeoCVYGhsEKvkqsA0tT5zUjzhAv0Wgp8KeaiOE93s53zWKreEsd85wKxDeCh78VCKNEeZhu7nfIS20alABRqPEdU+o1SELvH0n/ZfQCIuic2framHgDZKRH53fKKT8/8PU78ajyHz348XHrb5cqBze8J99+o+3QLiYwl0b2ZTbC/4AMgqV7rdiVYMMzmzul2HtE5zKP2C6PJtr7/Hnhs8WVEl+RectaIzoxXKfRvH2+P7XrMK9lEZRs2LGNwM0R1fEI+iqnTBqhWG5mUj5nd2fb+m+lF7YYi9XZTjqjNLIg18WI8us2rEfvaTUHCUhu/v5dUmyGQuj3p8sqaMr2vJ8W8Jh4n5oaYpRMrdhrQc56vaDpsUumPyql5tlF5VtXFd+XbcIs33ZqryUuenq3+tnZoTfEDQGZdR6HZWJ7DkMILTZdjEdZLv/Zwmlj4ZqX33Q+W59kbDl5nCkrfvvdpUHWO7LtSbL1V4HDvwj9RShJgFz1f8OrtlzR4REljd8gqN/efZsfn1NJoAEaPEmv9nD+MjaSQohJ/FK7kB1hVtwuUeZ89fMddHh1tWlYblrRa48IuuelFw9q2cQgTClxnX7TKTJryCgsznZWzX/WIlfEkCA7tH2medBjymO8ZHJC86o46BtEwP8oeYNCpjc1M3vZn/m0MUVRe5hbROGsZnEhlZVIKVATATKbMBAubZlLaqCkKae58a0222d+UFkSH9k2QoKieI76SxaJl3MHnmxruNlPL647SzMASfH69/yxlv+ILPva3Dg4lhr9cCSt678Tg+PRdpTYeVSK2WRJ4goYLDdtcHfy1HfHEmHgF2REbEfNHROFrBk8KOunpOkc6SQvYSDH7G2cllZynXRIpaEMZZR0hXMm26dB7/iAlzkRQwaCVb0IUFNg40zFF47ewM+cdCe21hMktOjopzeS6hFrrC/XOqLbnPVcdyamVyJylwlpNnF33AH/3OZb7/fzkJQ/3kvE9LbnlQL18MsNORcT0roLdIi9IefxjHxSHoxfODUOQq7WIvBrUatZ1AsEn8E4mXpuNJj9kkNrlB2hxdR17lFOQhrwRwwWE7Lyfr43Sw1VOCwV+zds5uJwVFkWjcOtzU//k4zpaTDjTf90HAw2mJxic2lyUEpYDcQwStim0eR1VJwt5oq4cxCc+P60t1YRyAzjOpCJDC6rYwNno8Rl9dWHHQauFW3xaWry+vJFKMbYgw3uxrsqAbmqbzEfX9+npc2T87dqMrWv/3zkn3ku0owBQ4z/7ME1aiPvPZX+86Tlht/XPJJTQh9G1e+mqS8/s7Y2OdH11/BrReMdM3LR9dXGEulfnhB8SDyHNMy1mm0tRGj3xChWwy9ybNKqeXvuBst1bNMUyZThm5DGhHQAKZH79cokyC9rLj8WjTIAas0Tjbl0pQ9VgYjO+yU9ishPlBjnv71SFl71AgfarP1q3UFnRZbr3UjFS4ILgKBMov4uewnacGn3qyv9XwolAAMf+jiS8mzRXJtj/UwO09v93rHdjITDnDHh3N8BD+evZ9VNAf5a3f/DOsdJntqTompk0iTifHDwlGfig5lHdkbzWbuLbqZBiFstnewp6BokHPrMCOzLEDtDU60LaBWoIretEkVPIJsDf8HdPJ0e40AqUGYi8od5OvRRAVPX5boa54g4goT9WIOCDSLfPrzVL0N50a98BZFUd3CyxwQrihFJLEepzXgABT2b8W5iTVhqFJZZGPzJdfMOBmM79DJ7LYC3oeUC+cedwc+69/3zF98obolvzGsJtLfylFZCRSaLr4PiBuQdHUfjYeC+Wq4cPnzRTzVeE4/fNseCbw0QZapZ49UIECuAp+lzsNQjJMiJQDEVeIr1bQ3JkwPca5+Q9eL7ZLbhaJ85Dwpl7ssvpKAptD7EUvshxQnERvQlTXEVDjL1uoZ2RzRlvEnXZnWFB9LDyBoR29RxSuGJDjJTIelpUBKQm+bus98Lg2hKZcAiXUrEBJ46rASmjsPiPyjDeRcAOMwv1BD6vfd0CcsOpVh41ecY+IHdo6iClX6BoAe+qxVQqp9xx6gnhfm7GIeQz/hBHHfOyQoNBpAQILQtezisee2C96B4z55R5FKa4FeB13Ijd3tDQjDAK8oPw0P/gpXkbNf64KSlKE1kfQgvfxLlI2tuytQI5580baLuNAUD6FwCAxSP38UGjuhARARwd4mfgnw0+C8DebwUAdz+x83QzPFyH+FfmvkP4sHe/CjAvx5ri0+k9ET3tAnEZ/skflPArEk6mTN2MU06GLB1+H5/HKOPiL6On/KssCN/EYOo+VJe5J/2qn2XZFbnBmcLlBnxRcWXnra9WGOVqOlgR6qshN5TA6E0Kegyb6sZ+NmuiYrqBOxmLnKag8sGbI4sSWp7LjJTu31K6Iaf7aeANaDLOkhBROn4w+l7CWbiiTDfN72n70ek7cpMqU3BrtNh/frxjTBy9lMFV2GoWz6QL7xk89LPvMWCLWJNuIhuLydZQyq/Lp082PceYgcvl9RJOZfwU67VTFvu5OV9VXsbf7xwVUa3n/v8wN8tBAABheW/5S/pRTH4TIAEAAMCnm+rP94l3ZJDZV/3ZfpbnuwFAZkKa4Jx4otkW+W+h/rzBYKEPK4EfNZqA7XQA9hX3by49jYSnnh/3HlPGIyzcTz1dQSh5HpG6WG+Qn/PFqswB0xdASiLlkO50+6hu5oRwfv7Kx1gMtUe05QeO4MMStO6HROLH47gPzJ+0wfBc/8dMK+6YaXMTbMfn+FL1QZSOUo4IphvUvh3U0WDZoV19fopt3A+Zw1XDqPKTgZV0QH428CzOpGf8OsP0FFcNQm7Zw+sN0mJGTnaWgn7yNNyKyKI4VxWMaIemepWahlLf2daXYU5bPVg+US4pBzyZcy6WaC4WLyNrxI6obmot0VDbxdLzXdv/wQIjRPhGo3U1Xs7IE5ZQd77RmTNSfBkdkrm66C79XOE31TVRjWo55SwTzzf1zHXd06vHupXqe700rpdBr7AeNS/Zz5XBDAp7zChnPfenlXelFR1MmKyaLar/tVTXQY3VumgtOc2MIv1oNsgaEZEZhimr4SG73k4Z+8nT/tI6k4FLn4h2VOFDb9GNyW8mkoJ9ilkEmnzqylmeIf2rVH/fLJvA6tdY/XGqKbRShpI9E20+YGt+h3JjA1rfMXB1h1KN58gwh6+GL8OlVIfNKK6Il/7PreZmkYGvnNE7EjbmOumQsSiJBoPrVm6H95Lhmpjhe1DP4a6hldr+FgTkKBmJWbvx2Bt9MX6xOCIrI6e9DBaziWCi3lQvRKV+bjzLAkesBP98R+dIjllgON5qWeAyfRu19kPjcRLE+eQT5/Ox6VbFqsc4FsaL0Z0bL6dIh6sczfDwH83pKs0grbVu/Skf45obtdoC9zBNf3N0DXZXGKnwUQqp6C+zL0Y52Ov4aLvqBo9bEUhJK79NbmOCS820IO8bM9UYeXmhEVtqYTeW9vYsGI4yPvIe+082bFGVRR5NFQaqOfe2/mSowMzj+M0oL+1nogG7adVmag4dmzMbj6UcEIP2/N4thqd0H5yXFxvEGJbHUjYzvzH6Csf1VcrRbW2NbPvqz7Z2yG2LLY3IQN3eEDvtsLbt2MhoQwoCFg/iVuyuceO+a0a1qF0Wf1p/LcZpU/8EYoqxSuiXhB9PtekByx9QnssvLxBxOWDzKVt1IcZQV75KoaU9Zbx8GTGZYzvzldwv4/buM/eUFVU64WKvBzn7pf3/ouighGWFIvNd+hrAFRCAbzOA6uEVyaNiA/YizJ+ZgAMF22Q5bxL0h+RM9keQA/qjdFNUicX74yyLrhLPHRoy/cRjLVKUeDz7BQshQCeStgZLCeVHKbNd9YvEFi0MCw+dWwSOSAJBAoUYGapkxE7r4dhhxluzpItVIKiiYRG9llyXEbeMtuujBOViDCySf8tIEhWR5S5jn8hSjkY+ttU1JJIRnISudDHcGrZNcHGl419tcEvODgH7IyNqkMa+QGqlcbVOXFCD8fWMR8hi1x2b011GNR0FRUmBTTtRBCLdZDeMrrwMrmYL2skW4sPtSa+hJwffdr9rht+t8BTqSo3n+J587vtzt9pprwN4DvlunDxP/UxuZe2vbrv++e676/aM9xd+Evf/00CECWVcSKWfhvw+X/fj+Xp/vr8/gAgT+jzWJ1fa2KeyfmxCTBmCERTDCZKiGZbjhSe1/l+yqumGadmO6/lBGMVJmuVFWdVN2/XDOM3Luu2v9+f7O87rfgBEmFDGhR+EUZykWV6UVd20UmljXdcP4zQv67Yf53U/7/cj8RM1/5HVs4A7oiQrqqYbpmU7rgcIhCKxRCqTK5QqtUar0xuMJrPFarM7nC63x+vzgxCMoBhOkBTNsBwPAILAECgMjkCi0BgsDk8gksgUKo3OYLLYHC6PHw56oUgskcrkCqVKrdHq9AajyWyx2uwOp8vN3cPTS7cevfr0GzBoyLARo8aAxk2YNGXaGjPV9pt5wwfp/ltzMODJcIJkMN267uRTcLPBce2ZYIDkmhIVgeEurssh33I67hMe3YwB/Um35c/j46v7So+7pqmx0QzD9EsuyqnrSoRWUyRVqHJrzcL11tv4JYH4+woqUrEyj2Eq7RhQaccIfclePoN/SSD+YQABCZicJ2CS7QQg2U4g9DX7GIh/uBD/WA3UkBoWzpNgCttJgMJ2EkKpv1eUfr6sYdefaEQpH1Os8Z0gGUwWxea49iAYICiGEySDyaLYHNdeCAYIiuEE6Ya3ZDBZFJvj2sdgsijO9aZady5fYL37PLLYL7xx79m8vYuP7oru3fKFeT7o5/Nw4e6WXJAEyWLxOs93t6+61Nhn0zAxpHQm26ZN8dudkHG3nfKjdK8ur8hAklgNbd/w6WsrVsqbnMxYmck4uTMv6lotvGlpul326qn91Uob12y+7uUr3uFwUXSnXN/c4ghk+TGo5FJa0DY7bnR41HE3fIoWOgaSIOVkqzY3QFIWSUk7jnFO9Hy3IEFK6dBAgpQHW74iGh+AqluO95s+TZZaz9m550Jfl9A8awatJ9VdYfqx/LT0eAdFTMiSKKQXJ3eq1d2+aroO3KvghPpak8G9ljSHBSmkjJVXjxIx7LLXp2qL1VjM1+bTdXrYl5NSS/VBxB7flL6wjxOySXvmuXdmXepauauZAiU0SGOpm41V+dkkdGZ3F5buGULGhCQXctOWbM/UIdSVvfyl46uMKti76I2iizFlTtv9XKwN9bVk+/agEDdLUTJkrXEcS/Pocs/e5OUnuT7cBcV+58aWPQ7UuQa8xc9ovnt9LY9Hqr19hBA7/obhjlX2eEx5bxJfSukIHRM4w2JQ6QgdE5JMcnK8VBe95ugtdOLqRJ2sM2usk0HV2cEz9/tANOG6l9/phulwuiy3h16QLBRV0w3T6bLcHnqFhaLphsk45srB/1VLLvdy7HLdfSdIBpNFsTn53hMa8YNsq3vV/9FNlK2+OOPfsNVeVzYAceodmXO2ohz8etxSe5kmRSiapGpKKeacHv75u2Cra9DX6r+km1tF4051seXLHj730vW0STCHpCCDUPMZOpONb9UV6b9zwVhv5pJCLgXgBAwaOR3QhyeJL//n9fW1egReh1Gj70tc7ggAAA==) format('woff2'); unicode-range: U+0900-097F, U+1CD0-1CF6, U+1CF8-1CF9, U+200C-200D, U+20A8, U+20B9, U+25CC, U+A830-A839, U+A8E0-A8FB; } /* latin-ext */ @font-face { font-family: 'Dekko'; font-style: normal; font-weight: 400; src: local('Dekko'), url(data:font/woff2;base64,d09GMgABAAAAADyEAA4AAAAAfiAAADwrAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoIqGyAcgRYGYACGMBEICoHFbIGnaAuFAgABNgIkA4oABCAFg3AHlVsbpGsl7NiL4nYgQaGTY41CYOMAAspGRkXNXJzQ2f9/S9BCxnjmDmZmCYcSF5XoZGTcKepkMlBQ5t2Uw8jHEh9heSxYFlhsaiqCzjfqxqw/7HJgFfSiCB9XJR6x2GW4rOzwTubPhv8mZ4A7rIhx5+H/9wf0+1y9EZlkJWr1SdMARUcQEf7/nSHYZgetKKCUZIrSYqCUgIKKilU1Y67VRf3C7Vety/paf+T2i1/F7xf5/3783B7qcXPw+xxTCR2ojURsNEiRkH1wXs4H2CZcJJIbu99IKSvFj+9MnY7j6x/zx8+AUIly9RUHAPl52lja2A7BEaJkFShLmUUB7do5hOeLkpCS9AD5n7x2N0Ca2JSjPzp/7DfrZeaW7Do6FKgDFR1RiYz4Hq8jVjHEawa01ASmyQ+y4qbTlBK4hUidtsofj0dwYNmrmmTXc3Jg1T3YlVnoBMTBcWAfBhgAhhH29zrL9suQyIfeQ2/4GKY/7gKERSU9S15JX1qQrCwfeXdiOLK8B14feX25s71wQBBmOwRQpQWumKdPB9xWKUoskzJViq5FLvv877Jmb/bnX2uZo/TtCuEzdJlzbt6fhJb8ay1LaaqNonSbRQ2owS0SB8LyeGkzAuFVajRiy9DrpU4FPjsl/ACL2JxhbfnaO/snpCf2Z56SxYpogI3MQe/qVeYprd1chAjKRyyLWbe1Uw7HDAFYpCgUjwLhZQKB2ZEvPH80DBw8PAJSgYIphVyoDET4SgY2DjGckqXIlC1briIlatRp0WaGITPNssC4RZZYbqWVVlltrfU22GSLHXbZZ9q0g4454aTTTjvrgksuu+oXv/nTLbfc8cAjL7z0Ph8D0dGqdPUrk8yC/NJoeZ6BhTCwQHbfMy4FoMEB8n8Vy6qToQnCm3N6aZuaTKNCy1lNpdX76/zCljoQrHJalAMOiuPAH+qO5wg4iYKFQAjo+RcV1wAsxUQXEsRR7wIJuUOgrx8fMBUavQYBU6bBK7B2j3EIoG/dLgJuhxMqr1GXVIDugX0NIdnqy3zY4VYOUwDOw+iD/20BFni+ZawBchtA/bYb+KEiClE9y4CBQAK8ynevo5kgKPsSUdKLkaTPgDELrbPHedc98MQr/46AQR/6kfnBWBvrYF2sj8VhCVgyVgQrVrpi9UaMWWSZNT60ua1tfwASamGcUoye0qTdzvnafY+99FnoaR2CnlYIyyRNlioDFliI2oH/Z7jHXZbM+UbOlDYf3J7SrfNS4JtF7ix8Z6E77c6CFLWIxPrmxNQl4KtLDzYeHOTHl2GDaSdc9xifp4JChTOIUqFKjYaAhlNR6kw4FKkpHGU8EfmowpbDlPvOfc05LAO3BMpyvtbCWQdvPaxJRBuQbMS2HcMWLNtw7MC0lcgeArtI7CO2V5BpgUIco3WEykE6R2koHRbqpHCnRTrL6Lwo55h8xeYCl6vifS/ONYl+kuGGFL9Jd12uO/LdlecvJR4p91SZJ0o91uCVev+o89KMQKAvoGjz0UDA0RsQ9AcMw4HGrPDBbONBsDBIJoIozR96AoCl0RhYfcspyc8QllI7JNXv2n3S7X9wmc86/avLf4R2y/Qnf1SbeFmp0WsYq5h9zeIb0b7jcEmMyxL8wO1HyX6R7ZYC9xS6r8gDlZ6p8lyTt5q90+K9meGNoUBhJLwwJ3yxKMjmBQ5zA4v5gbcg/EBAMq0OEDsDlOsArwIr7w7AOncAsND5wNgCQAWUfJSVDamOIWgQsDgs7sYC2WVJJJSwTfCL7USUZiREw7gNeisHGkogImiRQYU2qY8RYYcugLmCMc6LYAQHBDi4VCFFiygES0PfjnjdiQHmmXoUlSC4xvWCn40EAeYpKmSHxSnQtxJCT3zSrDxnQmgIxtOrmPB8iQoKkc+PyQ91hFvgOgovURQTEuIDg7pPkS48Xo0Pwgfi9fiIwni91OpUJ7uT1A4p3oyFm/tYLimSpOCQ9CS2T6SPDKvzIZN9wnyYbDNDoUnTh+PxKrzMn+mvCM9h+xjSsj1BcU6nyhJGIoSGenlVt9AIOJxGJmKxzIlWiGLxkRIJHEvSEgW4WEQal+ehoGUCmYQXEWgcdj++BCIRT2G3Mcmtfr0T0z/pQUx3ECm7Zc3WeGKWfMu24RvPDX+XGn+/pvANvCXy+yeY9Y5DWhMWA4h6OS1Tqo6TwfSx6e2kEanh4iUSVixby3m10RIyEMkSppjr6GC0AiUyU1GU4i6YGMKHyGij4X9v1XYyqsiE8llvzUUfuwDMOTb4ImNkBmdgQdgRm7tzC/R6DCC99Exlq6L6bGmpTqguoD0IYItM4cYtCdFtwgKeggC5oZdK8CfKhAmuJLw0TFtZbDghzqRC3MbOWToTmmIC5DCdqK9fwZQGcTI1BuVuTlHpHKYzcU06JL3RIX6CcZs6PosTVpc3Tpj1dbbsu/kjz/LMboudeGwOEzu5pH/UmoPKtJHiXrT4RMA9FQB9HUT+iakfKxvPmZQ2xLSQ6I0VAAxLrRExfD5jBxvlQSUBoijjDne7so2mZwFAReJ1o2OWsIUAks6/9xMtUhEh/yqShT97HjZrczPatcZ73dygspaD9j2zxlM6rBTDLPIDkCbsLTGkJroMlnbIuakCl30GdgoDuC5t7f8cKIfXz5Jfoqk8XweYMpmqE4QVNYP3G2C4qCUHfJ8QcXQzl9XOcXMdwQbGIO+X5sxxpWbiho8E5Pd4Bwib93kMyqnE1MKpdSnjgpGFo2MH16BciTMjcxBEasJoK9FwTi/1EdUFcBRoAoBBbxDTcNgyWJpf2k/KPuGTkGUptxCjPG8aOXoxnRlBZJewS+zKAElHp5h6CYkIdxMEYEHEYfZuJCMv0AQSrC47EuqZF4Xhlhd3oaXcB4hip7ba+bkJ4T4Hd3VBAJDHYH3ypD1Y6pNUtddBz4Gmoww028v3AcN+kjcMUMHGow9xOUhZRDOFXnsEsyMNhZDv3Br2DOOjGUBeNuTavIYRt4EyRzN31qQz7OaglnA6cN4dNM9OZLwXJGhuW2DqaE6GMyeXwR0phLQIu64ZZAUez4OCbScAKDJYyFw0TbxCzSzHX20YLa3yrAZsJQvax2HsEfHQPVmPBuaKMz2NFWkP7mn0t95ZR1jo7lTmTpq5jFewheyPg+ZShEDQaXTNamIckFMcjR1N5RJgmXVFpKfHL/JcL8xFHaXC1UvZ0MnCbunR7pGdB8C7yBynDqHhg2uYjnh47JE7YH7aBC7ZbfQH+EAAuaPoadbn2htoM5M2hLiUh6nBNwUAmIDkRyPFm+lHxO3/jCTaE8enCZpwiaKPpTsrnsjWeDbTvSmvzIJocESLXj0Ofw862SsQ8B8XB9lt+AV0IwcSQL1akTBd5vVn6lCfbLjwcAFwnvNNWewSP0qpkCE+yYMi/tKQ6ZZaoi780MNMOLFXxFsmtdz2/1yp0gU/9C0hWdbzlC0FsSqYS+VO3o3EMSCmH/+stWUznUmmNhxT3txBLShvtGuTz+B0ztSaywDMrxM22xi2LOEenJIBJRRLr0ovZL2N+oy2Eq2PMJ8VIiVaH2LFfpB6yxZRDKaeMScMgX3diLjjKPUXJgR6QdK8cZLOWEd2hw/WudBW/pWb4l5IhkCAgzgw6XdVixrwqFBsv1OC9CcrFgQgFR+9Ppqr8stqOXYMbjOzESpP6j66F0BeMeiTkPgsLFkR87WpLD3FngixhsxN64QFEAlbur8Fa7sYFcxj0JNazGQT1tDOpwI1NW/vlN5gRPa9RepOSZ1DX3YpxPCyxne4unbsoAOLiCFbFvf5GHjDfDCVb+6UOxx0xeq3OXZOEZcWerEWn/0SxDTVjxb70Xe5B/kboPNex2wh/cwNPv/SF78VTvVOdPF3RgdrUaY/LAIgb0LSyYlIT0DBWEfc7DqgYEopa807HndIMVnNlTelU1YgzoFQu9zSxAFyjhBMecx+A0s6hFyzgCQY4GahCVHLJ6UFiAkZdiZJFAV+JIBpLkjK5dWe12eeC7m4YOVcdzPGsuxvnq2c860+WV7HtPAhaOKFh5P7TRnVi2yD60KV0haQbZUSv2lKPNtwxcqDmKCNYz6asJJPlvJSCZtqQr4iJhQ0gAFJNFU28TQaaL1nUihHi9M/fii4cGpYdHmAd5hww9kuwIoQMZvN4hZoqazQdebBbLKZ6Rd61udj1UQYX7L3bI8A+vIRRAv9BKz+iPUghYsyE4R8JPEAvEQbd9nXmP0vmw9DeuZ9BJg72ZprqESjeCHOxVZS+LR50RzVBvjTwaXhYMkszQpED5oH+UtMGathklxAUouCG+VVKOUSbCDkFUlxOmhK/UyHl6ASirVjYYKF9eQdu5U9T5bkisybqonDhLDcLnNXHdNPUdFA+suF4vX1CWbZZ5uGU8ripBd7gwxNsTnDDeUpPJY66Vm1SqgqwyD+z0Yoq6l0HeloLCrW5rEMR3gAOWqIdr6ebQNk2nFxGoXAABVzSRdHQgsH9DQ1/RoLng02dwQpOUbtB8amTLY8Uj0+kvbCJey9gjI0rpNmfxV+BUQ4PyuO7Y5IOxB45nygvKkCseQpslutsR1MQfLnkjtmRXqjqz77kz0NWFkAT8soByi7CJ5ox4tdoKiSxdrNxLmWwTRVHUM/lI2tcNl3FJ/+IkVNGBvwMnCpO37r/HlHQrFJq7Jo6cAcphaNgzh7vhGgfV8JgIDhZbE1rgSn0sW8/Y3dIAPMSnnecGI2GFMfcpagvR2mAJrQ8T8fVGbRXtVc1m51daEfPxcYjxE4XQpqgAbniLAjvcYAaEV4IT3wjQYq6dUA+drutIrEI5xCoURj2Bp2V2Q93WgsCyMZa9C8dCPeOkbMqkL7Iqdu5nrReMnrNE2TZ6Ed5NB7sURGjidhDZNmd/3/g7ugsuS4YygkckGLRwaWD3jf6QSOIDLgiA8gRYvb+u6cPmdwzdNrRxg2Qv7ZULmABvAYJXV+kztnOOJQVVFolNxXWY1wt72iYxVvRafBzohMIQgKo5zMowykuGK+ZMKE6epqTFob8Ni6O2UEINolZFeiDw8RonuBS92RKW7ct3tGCi/7kzWG8OUIlmGrOfVGB5Td7DqAxNoCpCRomdA7Z2+SuOFgFzndtWqradYnlJzC1G8JzWBnqo3NtK9sG1GFKcwGBinVnJtJ77BZpx5oV+H/6AtjFc/HxohzNXcMn+eUH6zSOU8cqK0N1NTRWQ61hWkOvRZUMO05y87gHfFA9WmiIGLzYUFO+PsoAUG9/4OYvsPbxM8CsqA9MdtjLazHrqaC9O/P2WyZyxhNwMEuCxGfcLUkIwk2WEKp/iEps93xRNozzmwkKIqULcg1IixWPyGLbRm+mYOF8M4S5kiKTVnwdwmyPo8EFtRovZqxkH19fhQx75YixipJpUPXNDBFgrWm3GvJuW5zOhjEbPHM6IXIaCmyAa2u+rSc6zasIJ09hPvi3VirwEIV9FUlo0xQ2xUaar4xFXr7NQflBShpwiJmK4Ttx+5QP8phHqdZFNn7FZocmOhQ3bPZqnXAmJijPPlsXrMk/e+l4eW1UI/DZUp1RTvQ8aV1+r6QufvbfdQ1wwSAbVB2xfZbLL+/pjNcGvPlL7pKsMSJ+vwZmep38MHpti/fKY0bPkIiw9ixFeUvhoni0lEyAyM6l5HiW+L2G8hRThSHmzloUfgKGyLPrZ/dPNQN++j6B69je3Hp3qWF/fqCZaLsWFG5Aw1uV7tRJQ284VyoWedfMtViqB6JVaEHRPfLGFfmYews/HoNlt73KqmJdPg79bzCJp1BnxblnOLvhFOXwr09yB5PbVuMV1J0Z5fz9XVd9oPZYJSDMStZsaC0kOI90SF3xfnY08NpNNiNDirYbezYNRWFBcAfRju/NnwhNi4Hp5MllpFFUfr6XGRqa+XNxjVc32Afr59BZDTSKEaYiryR9to+1TRfV1SaFRxE+VDifVxgu0L+4C9XOMNMXEQuKBPk2Hhu1ztp54e7QS1tHTQxNZkffMxRwsTInkpG7LY9ZtbmZhyFgtN1ddPO1HBRzF+XQVM+OIYdEuRGB7UIeyx/eCLVuWGyiWN/S8H+ZtyYe1B+EGC+esrHiy+yAGKaDwJekmj0Zxu9SUGSFUYq76fjjA6HD/TaWVcL777qdyd1vvj0uBEj9jTnupSvRKQSpC6zXeqbP7XRujWV36cu9PV8t9GQm/NWU8hRPOckpNNTyee5mALlO+tvIJqyWF1RDJwDZgFJxy4RpJjX31sNJEYJSolZEqEwzfENfXRadX0KeMdoYSGjSZRPVqs34dSWmCPSGI7knFVX4XRpjzHnDXzAqoNazgy2yBhxc4XLSzTqzPdbbJ4thW9UpnD+uch6GvSdiU1S5xMsbygEkNS35NxUOL91zcz5EEUtKCZ8RfP7pjqoYO/MjJR5EzMo/bHdPdZY/KDRGdG3m6nHkDlvm7pMS7sGIGzFFdqjyIkBWpl85cMPv+fz6r3IdgZ6JjwH+wdHHprtpyP4/hOA3R2AOyS1JkI5LD340QOlobUfvDGILsh1hAbKwUN/nEL+5XcHnz2ZsXr8QlzxsoJKPve50F/XMzrceTHIM6uoXMZ8KLQe5gyftYZSthoyDNIctgwTJkhoELgbYksOXxF5RoSxLf/gXRyemk1xdOtbjLNB1ZIIyFPLKR4mDSPgBsXSyRZBHdUm9VeUvz5+guAUCZwRaVxnz7UMmv5n0bLAiRjtbBvspwJWYY7EPOGf1E1O6ovg11d/FQO1OxcyMyL6E7bLajGCamC7dT+Bk1ca5TZWhBiKjWlhTbEGk+wSIXV8WZJEvjQ726E/czZSyKcn3tJGKoQ27fk1DNIVHG4NIaDYdPZvUlyQGKgdhGr+osHRAlDNFoKYRLA8IBNzm/CXH1HGJg4wiR7IHiidCc2NmA+bDwuLltpCQnkcWtvPAWKBKge5CO0SBtlRiGR7K+QLSPbp5PlBaeYtbB/XSTpvacPk4Fv3bk29abbcM4zxrb/PlvaK7S+9XvNxJ6sjSLjEo2hD1kqlSGyhueHDmVAGk4GDOWRKq347lSYxZ+yOGgGhAc0iL1J6PReN3Iagjohu/O0gb6DYAvODzWlhNcacxsDBPcOTq39BVKxGlHgRXr1L84tiFXknUOGIVZRkwkxZl0tWewwfvMmr0ASf53VSvKCzPSwnZY7cStxpnLCSS4Dvl1u7t29sSU9dkZC/sprhb21gUDLL+RHkhKRQT+PktSRiVkbujMXWxJid5HSVDM2pCLTPyfhKmH8RewWdF3hU3Ay87nanOAwTM7gbz8mOHjoPZQ8Mtrz/MiYUzhUnYBv8wasw2lDuVefY6rbhefd+G60W1MH34TKrdySSZnAJpD4gIJ6lO3U4aZzE/zZSWs/CPCAgq0GBiOmgU5BA53FiGSKBI1Fw0eN44ZZEC4qNgP2BL4W+A4QSl39jkwklDvpXkIVwDiQTkitsg/EGtNgXZ0nHqiEFTHoR0mz5ErHnIKrM0hK2LljmRo1UID0ibRKcLFbY0YijWDMs1Id6Ar58mxZlFwj9bInLqM/BbogJhBXcz4vc1RJMlSGRB7VH3/AhG1VOV5YahZThzDgmmF/6nu8mAMWPm6tY5HefGBqiGFfHQA1g3oYv8coDR+FyXibir6P0b9kRRYp5l183XQ7wy/emwxrn2VRip5VbZPT1OpPGW6kKCAujAgN0+RV+bLQAYuZprXC3/pckAnGbOx01U268dz+Q1tQbcev+WPpiY2Z7YuRcCjJirWq0rLojacPqqkcVPZkbVrsrsnLZXFNYZ1oW5fFtbqgzkD1Np6C5QKc8V4qV0hJdAdApSCE/GTIbbN7L2hyEe5tFA18By+C/sGAXxBHgFAWxc8v8fSmQlf21WxE+ZtTzH4LmcWVG4EHUXBjphQngQ3AksL26z9WE/kjNbnmnw/78M2aeRJGC+P/CgnbYGygqAgH7sRQrobnjUiDtYDgLMgFSSvh8s1DQXVALhdVzG4RYVCWt+DUsHuqgOoVBzOwKuufG6Q/gl/8AzfOE+Jt7zLsmFlylu8uFtNlp/p8o1z4JAqXRrGRk0Bj+O69ZembFASncoLbcBL7pJBSOvwAvDgkkoWb4Atk3w0xL4Fgj5D/cbbEzGPxjluNOo8qRSt8MVA/KIpof72ynoj29DR5fpbEvNDlPWwa5Ad2xK0yZGRz5WAxHw4oFlrg5F/uG1c20dEekNJeF2FjS5znQIXbo9q9hkk7icAsIhHp2XnlUgqlg7l0Zka2xdml/xpA63RLmKtA7IWcQsNszIySpgSL6QIcEkg3JVVbS9c9neX0UpdPMjkiqMDoAO/Ai2k4D2kKFolQ/T9aVTFPXcQoJ5W8q72yaVTuXL1TAy8TwPu9KHT6UV1uNsqGGUJeoXIsgIDEYE29UEs05v2DqxD9oYzVZx4cPH2jwHpSwgqjmsdJUvx8DJTZt44yq++BAygCfwqr08nnQzQpEFmblJSHOYlEXyuvQdWdZ/qYWZnBG1ClIPuaMyQbbispF/bXOit4jjpZTFif7hbvh+EqYAmjAzx/KmgH4nLqhyaEwsD+jKNIpY2+OowVmgkKZPrRMaJqhlSR4G0xbc/G7RfDhavZP7gZ8nG7dltetn3xFb+QCRNirNQqvJnH/sglEFUdfk4r0e/mWkJLwWldvYpqJV/tdxGAbhBwRhViH2OluSocsM/MViySUCG+GH3SsAyb18ZXPVzGEFpE3JqfwL567F6bHEW5/scyWfT60+DpJvFOXg56DqGTgu2nF69Do1+tllLnzETdJQLDsagrIpnkp8jlZIukJhT8TloQcgy5KpQJoUSL56VGCTl/ml82YP11yjIxHoBw+Sd5tkBRM2ns288Yt7QVaD12ioEFMuEyG0r+5vmXiVl/cfgDbBzy/xeAtvBCuOyECRhbCUhHNLVyIDeKSkj8fIehCSvyy6fP2lx9n4PAYJSIQdksMqWLkBDIvvtCofFXeT2AJK98RzAK7dWhbe7swjW6yR1DJdrr3hV2ynZKYqsTQGXb/miHCdOExoNae/2FxNfns1Bz6g9UjIw8PzWYugP62hPZixhjsNWNfYc3JkZHUr5dXF9adzmk7MrO6/NrW4VwQZ5tfFWooiXLIi5+8XJChZtWPT43Rnq4ZGXl2aAFrPvS3lbTXM8ZGv2011P86ODztjuJSJWQCS6XCriYSFPzcDmMifcNdxv2+xp5pu5+cm9+QGElgqziIdIF4q78zVYUaio1JhsXYOu7BY5WfulXEy6UPHMt8sWpzkYj0bnr0Crb/2w3Y9KIds0ZaOgOD5EFQK9I1ZezbB5esn9w8dgNevRen86IFgWZUp3wHRVBPyfEqJ1zL2urD6F8gcobu19fVuDK6K3r1qyQkGLoA9enXLQwQL7kvZgY6ArEqI5aKivYu9b06WEheI9i57ZijxxDfm5viaB4q41XN4Z2YF4/Kec4T7QqjKtEgQe6ubKo1DTOjGD0cCyST/AgXHTG/Pwl32bTILbCk6iND5khLHN5YAgaYMF+mDRD9TVf9oK9qf4d2h0eMKLMcHPbqTHY8qZ27IrKuOWvWwMVvayot5VGh5YY4WqmU8TzYEqOzq2fZCuvCRWeyWcnENubi0OrWgvYVay/EOUA4Dl4qKM1l8GOVnUXZ2ZwCpis6hP6xHLNogUeYyqdvxSMD+NagfDMB04gu4f5Tbde69c0SsLyoYVuoZfNziHDTQuec4TbuSmgdsLfpEf0wZEuSpqE4QNJxOsgFkn0XyphZCwaPWQrtM4M9MULdzDM98+yH9EXMktaUvqqpLZk5jdXNOWpxOifgcpifxV8cWCC0uvSsiiSK1deJS6f9KQSLZJd5hZp/D97cC7sHuxfEaOo13L43nrbYlNGeGMQKQLfabuiLNBHJu1a3PK7oKtq42V3RV9UPzWXpzoteKUoLOiBucBM6EKAalAGpdPEpjrjwosbXiwCZEhbqqrAaxU/SeKtBuwG2xkt4QU6aW03E3X1chSlHQn5Q+Capger1gc9OEXU3HSGhU8OCJN9MVqF8h+NhSIZPS5++Fd58sU1Mzv3PBzNxjcApQt3mQU3GDcF3C8/8qTXZpXtCOTVRLFb+bgBCB9iPxXyuGRKvLrNX8QN3z6mBsX9TNrpCMsL99mD9d9gvJPi0NczrQFSx3sJ7aAuDTHwKy6pFUmBhhBx63VSk14AXukAFbCHMCr2hxBgjL3oMnTo8Pxk1iK3yV078VLYCAadKPBv2tXnoXL6bRxWTCWxuGSlPZM8PhE5fEf/gYxA4mdll1ln19iTF1dEp1bo6r+VsfRz67r/dA/wiLquCmkJpcWjY0l5OeeJ/lSQ+VVRPm/Sf7Z0a0Eysy4j4OeTXBs1P1OjAeAZJbaMGvMhLDy+oUFiDGTPjL4TSWX6O3U76RMA672SfXJ9Yp+FGRYX6WJR/7HKKw6+ctCrSqHq5Du8pbMHEUoiU90Qaz+yf4+30TQkGuh6dHllue76KNkAO42nJfi0sRepmfU3LzS3p+yL61fXW4ZgMPnmAjxrpm6AIMsdljc/qX3DSbXwT1mctNoCk+1LsAHfgEwjTWoTdXOp1O0wZJeuQWPS5sY35S+uPBRZKdMMo0I9SizQWtXKaFzA1RZWkQ8xQe5IbyfsslI37HJCEJI64Bm49l4XtSQP+3l1ds7DiELlWlC7w1zb7AuPV3zfLeUKrOVAiTghV5aiceZNN2Z5t1bUHqsZm+P2+vb9gQ3PBgTwJxu3Vh3LIInh8r6CLfpym3cr+GcGbCCPsWHdZmLR8XVPGVG6kq6BDZwQhiT/lc/LKohKMFXpDcVSftcLm7y6aSIqbl7Zp59bzxwtSYZXZlZ3MeGUidt7Fog2+QbSIsB7TxgBn45aynK/mIbOFBUT2ru9Pt4kTdefXMMi78bgFhNm/J5SKYhydinRHC9q0JbyiddAGiW3P6f5GC/IgUJo6Fxs5o2BrpTYzLP/CjNWi3riat1XJS7VN57rmxa+IKxov0O6kFMmuWt3tnLIjMZXCGIJVvgrv/zz8ZarsRPwaw2ONMFkfStZtnnsp8OV6KwXsXnaSTxjHQFQwSmrTIERT0G2J76tkcia0BLZ90blGafjho08e7lx++5eygjErsnTgZlFwg6jQMhNPmhkZ6Snq0Kt1vYavocn9MGcMpmgQAX+rITCB6/U1mQSpB81Ipe3dH/dgco5DyaGuw3GtXr9c810i4tvNv9zS75eR9xXiInivXvF3Xdp6cUMV9tKa+fa2aHuHk0+KofjNpictcHB1yUN5MctTimLLl4oHGV1f4IaB4OzZqiCrJxXCgjAq45jLxGARZCmmC7YDDHNmaohTfrhqeSNZNnXwyYV5NW8uLZkLzrI6ZPaIjk6XhB8WHdlZFhtaOJ4et7I4ydTZaLKDiCX8SaVmuYFNWofxK/PTsRENfE8jpeA3hqAjQvJNLMEBFSmwJ4IZmKG7zHEC7zcJoE28F6/Kw0YMFx9sajzftrUW9v34RPxSV+FEsYYZvTznF1bR8YgWkYuk8dmJ90OedC2JLJHGb+3XpShm25sXYauB7ur9ZchBnKipPVwsYxRbGK8KGlgbAD+yQOzULWoP2G4cbg3RcI39rwyX0lVpfp3IEphNuSPFVi9QTh+5/vsCz7tty3qLDg82nUr3/9XX6Z2PmyneVNVaLO6mFRl16i8FXvdKxmIJSdIT5Zm2wf+9uXy0KDdldvdRyKJFM9o6wLtLibze9oyW8HqtPYH/MypxisVEG/9EL0ed3h2Qk02hanjwBMRO5IpqeMdIQlqVQvlgH+W0lw0JLRZF8wVrFGZMM6Y+EpB+XJortSsMLF8UWTplhA3/vYIm3LWpfzVcsimWJVCj5sLtqC8izT4tmE4FEPB+mMK3ZSkTbW8ubKQnn106GMM+gEm6hhjTCP7RISrtuVNiun29C9FMlF92v4aIvrakQ2TX7XrpTv74Aegpp3OlsSoDi0kJkOw3Qa0HIS65ACFjT02dCUkRWLTDUtbcmWP8n8AmaCRku5MXEWb1bsaMRAP/UYgjkI+QMaf3ntV5+BbNEjF7zuhh/v9gH+S4nVcu40WEq73qfDDdVuD9Jh9TK8X7vs9jT+Jx6IXoK7XY4U/34/1kH5Xe4tzydLfxJjMxnp29rX2Vp5h47w8fpc4soNxbBk84X805cT8KAqokcgePRvibCDwwtNWNAxf++lokfmHl04sye0En+DHWwk8UUb154IfTvDxaN8uXfvSot8+YZz1UoI84daS+nMf5lucto//Uv+GqHL4jomFS5E3wM4LSmgKwo0+YVMnDNBsyYfxDQ/rHRLF4t3jSQEt/RU8T9EfqL/z4wqeh+obKGIcwV+S2eXstjYxSCx0Mea1RgIr2gcm8g9pS4kKcHiEvyS7WIyr9mX73mMdjMfIVCd4oJB5MwsInO9CjzFhWRJX/T0ZLslSmG9LlN6X5WgvKekO0u099RE0FfVBQN62g8tavmfxSCJRN7JIHC2Q1qtK0VzyIG+Jisru68tHRrLAVgYFGSAxs1Hu+jpXBnRDFDZFypaT45vqRUMWx1ZrrF4WoCNpnpYa7du2mtQKgbEa9giCYp+CRanyKd5QjUf2X2YEqoVmIgSUjB4e7krVVmjK3K68jSrLwi6MqKmQvbApy0PR8eta20FSBVfUuODi5gWMvh5T4pYIW8uFFdXfqdnXcPlXW0L69K+vOirlNN450V/jbw2eXx5nciyy5Q7kJrsWdOWbnYKx7Tj6IsTq01Z2x9VysM+248Mrpl7d2fbkyf0rS+J3FwQsQI4isEN2bDUQChy80a/Jo0o5IKf0IEz0T/oADJf9eSy4PRd2PmZlDidyRxa5jWYoG1sYc7hmKZy+cmLpfpjllyyxDaaC/cQ4qVkI0G5jWmpQugX7Rtcqag807GqHfz5uvivf+nBzrVetVbRMZmNJAVELq3K+QB9ioDIS4cldc5ZrWzp29K3nppPd0xGdA9eAGN+/ie2n8bsFpyjCLnI2jGXih3mf9X3MrBURBeCbf2FQ3alYn9xrzWRNzyQRm34FZGgrQs9bFVfupf8QhVOPgd622g+bhY+hqFyEW20JaqqyryW3u3XEmp9hcpglNUbkpxUHk3+QKBz9G3alKdQfKzSGFjFR8JXGGNCvDlT/RcybMATSmHbm1c80uLBKJf0x450GWJZSLd4CsG8YaRBRV+6pti3mZq+hsqzm2ZVm/MIuPhzeLY0kln1fj8fDDMV+YRMuRy/tDUhWz7E0fJWrAn69fqqjY0T8YjIEaEicVAe0W3Qz1PSSjVmFSJbMEhZBxNzSRSY0WyyapGhjIhnqK5gavtYZ5DDQIlc6XWfNyzfzGmjW0G5A9c1E20PMaJNIFP2Aj6dRQhZuI/gcNw8LK1G1hR78Oyq2sle2Bd3YjhQV8Sj4W6+v/ikQDkMFUnCwgBq6GSsF2h/D0W4KYHylSc262mRsQ7oTHVcS+OcqgPKwghnABsnYeyiYstPZzBWzoFcydz+Pu1Q+8eTN//DZdsdpnFxjxhczT6p11/F+JhFJfp2+pJpY56elw5XYV6zKo6M1+UHLgBxolVgiBMVAH+Ky7vhaHho2PSW6vtGrOj0ZdqqD8GLooWO8A9kWXQ2r7Y1u5PmtGRZGKCOzO16Yx0Bsp7CGu/4f0Jd9Z9LwAMZJQOBAJ8TTaXKrUXLnU2w2EFtyvsijyKEwLbrJaPdF6PqFP5zSQCAycW5dUYlYLU8J/asC/Tfv8JBGoEtn1o/QWsjtzpCZO3dVJZ2q7G9lztxOZlYE+AcE4uWjSqI+xpFTURW8GKVwYarY8IHw2k3kcVZxc2owZUxRqHIuTilZWbmIkiREb/bT14oDvYzm9zUPoWNHaAdLVDY1AP/TNAIOSLbFoY/zpaJnJVMt3NjjmdT2dcOYFipxMPExDgiffDoxLXK1tHS+zbl42hcdf4JBTfIMGl3SJUqTmPrtWCJbeJC0JEtHiaEraaGIGj89IU/latTNiZ7oGH6lSjAcV9hVcH+4gjHQNG02jDu6lEYcTz/pGmKCkVChPY/bGqamxo+6Zrr78bbFchq7Ua7IQJQeWmVGTHM2KSCZiEoMvw7EQbYzI5AIEmVcRLvl20BsyRL5M7OTLf8Px/ZH7Qaxny3wWDvjz4+QiS5JX+nPkLIgESN4YKyQJNjmDZKVSfOLHTnEza+YSKl4uwVD9JE6zUpAOzYaoTT6NhPfev3iR8AgkTd8bHtYyH7kOxmMkYXGLEAjyzPKziyuygbNZ+yqI9XkWJldwgLvvkT+Jno5KQHYEbWfx/iNnV91nkLhzen0bYPx4ucDf5R0H4GtVxxaixN6wioGXBXXrm3MOeBdHiQ8goNDjEEpmQ2+6drFY+POT84mc+EVAh0As2vIrE2RYdLeV7BsdPgjkfs4C51k9KwTvxjgDhr5bAaMkeFGTUmWlCjdOOtpPWsLdU1CgGVgs5Lnkkju/OaCRuKQDhKICGM8QxJ4xpqL5pyqJlIdEJt/lV+LtyQAQ6BdiE97/yh9xYDlwUcwnxPyqYBuFrLZRqf/npkeFNfLeBrGezvIpcABqvGDuE2C4NZdRuKpWOouV+RZ2D5XgHeft6KgnuWVzTddPYN0GgvnI6nHZ/oeWq71iIDpxh8arzHZ5oqlWSxmNqXxPozUpIl1lswwZIzsL68EA4Q1q10ke/f8ztI7tXR+AIJvy7/Z1D/+6lMptl4cNNWx2CaDZTMbKdQkOfnYxBX06R2oQRTOmc7+dIgaWRkRJ3EGk2bvoAI7cPqfYSGnhSWubBA6ZcHcwwVOYmX11TR+Xn/4vLrgw25x8/xeA1xDCz3+McgO0B5k/L7hr4jDk1VDBpKu/PjxRRfXagt+0r/ucUP5XAxxxGv1cjGIFKG7g4tfBxuEDN7UXd5GSK7kyW3Ak+18URTptBDjtXSQzL2iKRFp893c/jOSpWmimbHAlcLNkAWX/1cRHWikhjzkUDKEE8qDyj30g/PnpcLWRMvmc7+IEhP6MjW+HjO+EFQME+bL7TZop9MFmKrc9MNyK+qwaMbwco61WWbhRkkDuZFRE5VWsa2xVMyMnb+eCBVzBUcCxqw3WX+9/ZkD1Cb80zmp1k8kw+kMilxFkWefqayhNOJUPfnN793nRX8OZkw++jmvrgEo3Qi03dfGxvOwiNJ4ql/NNpTDjjyO4n7O9wujMh0ymlR0xKy632yqQx0UkZbIUQSatkN7A/a7WyQQo7Vze4W/+HyVFTLRLyJ4IpPTsnVgiZkXxABgpukPjlaSnW6MF1uiSEKPyA406pIh3Dc6Ky5i5o2cCKN6sTNQomIvHcxMb4qXUVMEk5Mtek5XK3y8j/PPpkMF6db3NZnfkuoQAdQ5TpKL9LE2xFybXxUtYe09WXkYPXAkQbJQSqBf/NMRclacft8dnJQiA/5u9InOkjh475KcOcsYIJOYO4pYDN78jStSOUBHdiWXKhPkhwO/c0hzpb1RXO0DfaxrgCCyxytjNn3GHDvOYfCZLPL6kZy8FIFtsvMPfLFfEKGPtcUL2gJzSvdd7bsWsfO4og3fk61kqZ5DDFifgjMvJPfvIeQ7mAfn0+3nnhWozGfE96gVfyhHWU1q7rH5nB+zSAHt/lUcTVm6JqjWK4hbWNCjJFc8T22xeztz4rU0F+6ikeGWBEO+dhfQhJDsFTOAN7zII9LqsFG1wiEs+elhPoD9E/aDEU0oYSnFOfISO8/bcBDaAyVWc+wcDIK1t7rtPb9uUHiWDWy4PX1J/zCmEZjEYAMwc84fJkZxoLQ2JstCaVXHm2Qnpt7feRYDR+qo+pUEhp4xwxf2NgmTZ9IzVRMih32Njyzjf3Yqn8O1/4lRLanRmQEs9UedpUMopw3xJb5MgUXq+4DIRstjpqmAdvRJHFjieJ2XU6kzT6n6ruT6x5LzvjVH/B0ui1Ubm43tkAEvTjvIZKSpTsDno2ut8LkPeBRUecy6tD9fuHO/+emW7JYTCrQgMGx7fVM2D/m5gvOS4X/tSV9wFw6zrgAt9HMcA8jf/zTknVMkPBzzjCSxifiXlfy9gl86y91WlOKFuXZQ4btFxJ9nsnLvz+PG6rfX1e0mnqpON9PVPrIoQRiFNdWfgMqQiSs258QanSTw9g42Ih17dlOpo+hKacNeX/RU7JZRYFo+LyvEZigj0ice4OZmdwFqggBpefCVNRtis+yHUQ7NkZi2gm17dLxq8m3GIAPDpe/GNaD0wpYfmyDgmG34XGWvFAKxNy8eDtvd2wW16ZxuRRuob8QrQ5/FmaNqVKAjUig4G6NL3j6fvonEN0uPqdDo7H7mwgPknLk4JeuCWHjrYlWtCHiHiS3nIXAZkTaloAJTFM0EjUZQl/L3TfC54jzrXnJZWspcFBeu7wpcQ1pTL//mQi5iJ1NdujphsjAzdMr/+RmrBMTON9Tfw2laWyL4EXbPH5Tzesf2E8AeZw4QhHzvMTNNi7IMV0qQHhvty5QGDOBpz20+VZI+HeZHBnqm6LJmgB+7rabBl5kfOksuHc0aE5ZgDQ5gDXM7ReqDE2nTS3CVVOxoEcXFXqPfFk4+O9ZlwSzuZ+H09jcNh5wS3fW3z7tq2U8PS6XyOtdt4uQVPmdnBmfXWn1KShq3GifqicCv1ZcEFfVUs+rqo6qmD3W7Izq/ngU2hgMHSiw+ipYeO6pG7nJSS0bES/e4z0ar20MEbR2E7jzajmig35XM+f50uFuaxcaDYjaU3BAemcUTYKwBgbvFr2Pn+8GBxhY72aXs3t+KluS2r8n/4InC01v2a/KkPeSRQc1KsS/HLwaI+43/4sixjGjA5rf/C5v7OfqM6idA5QqVNBDvv7OTToBGiRTUvvvt64ZBdq1de1CA5vN2UNcP5M9rdgdfp3d3+wAjbKa34/T/oyRgjjNWS6FW6KWycOB0iYXzqpwi+cKb05AYz9MuY73qf6eJW14hoQKxNfwiVDGkddbwg+4Z52A0udrmwpNH04RFcaW6jHltc2d23zc2Pep1jdxiTG+ATX/mzhWd4Bf7lX2cCW8Sv0WZ+g3XZtL0i39yJ05f59mgu4brzt4k2TEs5PubXoWv4DhBrU89omWpz7iLgH/LUI15GJEtbnxG/2DEAzw8PuHH5ozB+la5B/X0Hf5f7PL1eBZ1N940YB+Q8FvKHEwOLxIdkRZvWlbhYqatxxHQtnqV6XDcnNDqt1w12qztO7cRKJndZNZA/bIJqCw2EC9LWuvefdCgRGFSEH+70mDk4fKAGRvkZaHAIbf5f2yz/AcwIuoUN/uVDgP3TipTQubzPBn8yTlzvqx119IXicldF58naZc9uX3nlz/nd9r169PNxRz7VvFAnfqH2xZ8AHJ3HYx/7VhUmWsVx75Ty0PL6kMak8XxqS6xVmRe8YTAeM/7Q9nrz8vmlt7P0EjcXUyT6eTSWWRkJjcFDoZ4hjm90AHB7PnJ2Qq8qjmPG9d5x5uZ7h6LvcL72bEKT83ocgxw/pP7/GWq7grSeluNMzmrftPM0Cd+MH/RK/0SgPDHRqKn107isstbNY5qh1vMjT5T/HWMxS56xr6XW6v/vrbu4heoxinZWdd/KGDlkP0cvmTPaaWVWostMG2hz+bWyT4E91vKCfJqukWcBBW3aZfnXPGy/sbKjYx+6TM6opIyflkHZyOzXj/qU3lOwOY+neKKp/Lic++14xRnnmZ1vLRzTluY5p8Y+0GVyRpnatnaUppGHPfg25SXJYx98XZURuke35B7baYhpvZIIy3CMYyvy/2/UdgC0vvyspNB7mh7P+7ZNNHVcRprGeMa4Utebn8LxqmrMk0QacjFbHs/dMSnjDyntWS1EfiuJwdiO1pPzFmq7gmFSnTKi9yB3nnEIxozHqBbCfXyH2mpB+SgB/RnqAJFP0Xk7NdDGU2Vekt2vc+YVAf1LecQDgJ2kj8UBS+4L+XWMKPEw+556p1QNllFl8CX7SFMzU2p/5hgA7CjDQ7V/w8ldz9R/1MiE/D+cjwpTTcs++AT8r5n9RPepnBtdiMY5k3LCGs/5UcvZLElfaMaMgnE/qyVVEadOa2koe6dCwy3tR1OZtbPS0q/knh4VOAnN7OeoF97sKWtouCGPd2m/Ts7KE6j7VWba/IFeIQ45i+31a5n6Z72SopZfr+9T2EPBuDyupT+j/AC5l/qHjE+pxIfALv26vlTU/aHg0DK2/f/lSJXmUDQrzaenZOHskX9lpmj7PyrAobMASQ8zfH2UVG1dNRGUb8GbK9ebsQF1krPS1P30nqYzMs3Yn1UYoOIkNOIk2JL+aO6h/qHFmCJNx/37UHm2dJapA4X3ehEzBnbNsFGG62r9RtJ6jD80+lB2XsIhUnIFA8Bdh5yVaj3xz7znzfzdJt0X+TjDH2hIGwBvL8I6gNNeCQV9vfzflsXNCxwETKBf5QTwj7upi333RP76ZGoQH49g7NyfK4rVQLtHxuMKow9txYbC+DprVTZebN4CfAtob3huW0nQim1UmCY3vV63osp35m625jLsm2WynaVasfiVDSrrJe3wiRBqolIy4ImqASxUfWb1at0WjkVAEilhXj2z7x94ed7IZwtYTWvZFAdWJP3VlzpGXZzylmYiKulRr5vNdhprAks3ez2l6bQ+a28u5bVcWK0StQrFFttoxtfxFttmryyIdb5xr/1fQXXPc4+6leoulTuZL1VzYiN1/+Vsv5qm8JKcoP2jKWGecV8lrWXqHtMX46bcnt3nW1xzYyynVs51JTzLkedHtkLtMyOxILGWaCEmCa44jOP/RDN9HppXJLj9Vw3aTPWZSnWImbFvxFH1icq1SvQRIYaiZnJLXaxSqlilGOW7jb4KBEkKU0g20G0yNrF3KU+sjYxERIeN1SNlJ6f4OW7/WVr+t3Z7rW+goQfmj+PlnEr6UsQr6BmvXF4a53RF/SyHLG7hay6N0PUi1S5Jvclo4I7l2aRfeR3SXgKpapGempFC5BkziRTiAkFZrusMq7j0ggCxszvwbv9l6pZLc7pjePRfQBkYSOtQ/U+gHoS3t/WgsIF6MMGBDYf3sesh0MIQjjx13WBpI41VvQadmlQqV6EFh0QxKQ415RMv15c1Xr0SrWoUasIRq06Zei1KFaugfGKMr+NYjjMTRJ97zSwYx0FVFS3y0HG+mvi6gU/Jzm1QqgoswlKrWYt6JiBsBj61CpvN4fanKYM1G5Fa6oRgxa5aUtEsoVp132SlylPKtCkaI+tCmDIcRzQ8PNjMNKUZqJn26ev4YIIGksts0ZCZqaCI4uKkMxu0KBwsnF0j2DxfHgtws4sD9bhtuZ+a0i4ydf43XwR9C5jMlsbdmhAqUf82tDUxb7vD6XJ7+PFPgoCIhIySVECy3qOioWNgFoiFjYObHA+foI+ERMQFkRRMmoJMILkgwRSUVNTdSUlDm4pOCL1QYcJFMIhMLYqRiZmFNY3odGzsHGLEchbC1d0+iRMvgVuipPSSeaRIlSZdRqEyZcmWI1eefAUKFSlWUrhSZcpVZFDZUe+pVqNWXZHquw9qLFqTZi1am/RVNu06svcfAOnUlUM3iL8Yvfr0G0By9sGgH/zop1xmFtcvkF/9hmJ+L958f5ZgLLdx//jXf0wWH39/lWi5YElWCouIiolLSJZsvRy58uQryGNLqbYqVqJUmfLS7O5en+1RpVpN6abVqdegUZNmLWU4pk27Dp0wgmI4QZblG5phleMih8vjC8r1fQ9EYkmb2DK5QqlSa7Q6vcFoMlua3x/d7tcWdD1rN/u9G/1mtdkdTpfb4/X5/VYvYYaz3jVds79xvGRMLOehJ2OxQ68bMhyW20r2875JivUbHWz/hYYzsfCwGvgoFkZWPazDZbARA31RoPIq2ccTMHgroIQKJ4xtOLSSOLrZCQidQjqnbXhCldTzaC/zfp6CaSqJRwv+C0LJh3arNosvZQ//YlcQIijHyqFABHnoz6dvlU5Dh2pkVUJHnLdtxB5Ws/j85iVWxtmuNuBxy2PX5mrXiN7M0WAiNSlSNbV8bPRlu53ZyvA6rA9kib37cs74MPf5mfP/WZ63ruVtpSxZw+YdxNPaUDoV5aXLtcrHAWGj4q+mVaa+XansNqJC2IfFx+OkGvKM2po5NOxnN+EpfhMwftpokmPF2NFxhZqb5LMNNr7p7jxOH/SzjabTd9Clo3S/xx32+pfl5YETbOZdGQxOBsGT88Jw3m7zh4QfRp0/SsYe+4sLQG9c2QQEyPUQGaGsZatTQSN1AlWBC/n0KMiEE0QhSATZAZtoKsuwCVZJOfs7iI54jS4hSWhF4UROTZuOai9Su6p2oPue0EN6NCkaOzo6LuSBYjYlZnW257mSB/0mowhjlWORkpfskl1wpR272C+z48I3PTiUww51ZvCavcfV0zldMieqWHPecVkbY23oioiN4MDJAaHlK+LsNX7ZaQOXuMSjPhOPeC794Vn1xoff9I//kv+/NeGlt1jJolfGgwfNXnFPZcNMK5s09pg3aqj03B68rB929bEcOpHzZWg+EIsao09X/ox+/7/x7lJxKWrYcP1Ady5OrlhR+xhcdC/hqMgXba9l+aTb9TwjhSJlr8BDVYfRnk8eaH036q7CEj0UGPKbHwoG) format('woff2'); unicode-range: U+0100-024F, U+0259, U+1E00-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF; } /* latin */ @font-face { font-family: 'Dekko'; font-style: normal; font-weight: 400; src: local('Dekko'), url(data:font/woff2;base64,d09GMgABAAAAADwQAA4AAAAAa4gAADu1AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiIbIByDNAZgAIQyEQgKgboEgZoDC4J4AAE2AiQDhWwEIAWDcAeEMRsZWbMi2DgAIEhbfVFUb6rBf5XAzYGug4kJwwGhoBjW1holGAOGHRHlLrdonr35mEE4xuI7ugkQXd06jGUdRtiEYEdocopWHqL9+N+Zmb1731dFVKNrFtME1RNNG01EEh5peFPZAZpbt2gWLFgnrNnGiDVsxIjRMVpKoiUFEYxGMYM38n19q18/Wt/3Wz/r/597TTZOOgYFKCcUCPXyX7qMwAGnjbm3dfeeuY8FSjd2KAElJn0F5Le4X29655IvESltBqym5+Y8IbUvB0P4/2vzHU5XJRUNxL65tDO8ui029WEbTncjmA0EPMFsgKjc916kqrs6Jo1pziY2/19gshNuVk04YpJtd6WzSiV7vXSAlH0QAXD82delXyW1pLU1Ixnk2yprtSh7UT6Q7D2w98D7JO8TQEwyHOHePUIEGCFmRPlnwPEH4QXhhelT9Nnn0YeXxA8UfRC+Dpkaru58rJF1fz/NQNfm8mwaKbLUdPzepLeXsWHisyyidNAD/UcRAEtJnRJE3wFkqc6L1qUbiLhqi7FwgI46JikAIEEBjMFmV0Nm/QWm511Y2aEDIr6WVgpEX9JSWQf4rixtawRy+GSaZ3TbIMhtg6FWBgKNAHzyqUk8gHGGP5kHiFY068CUwYQg54TDwv0uhCMNZBlj5cpgdSlQkVRQU/R+KQysHCEXZGCN1xCLAsIwwR85xFLg1HzinIk5mX7D28AQRPEoUAMKjYhBYAzERn3GdZd+k10GTMnLgDriBAWcleEsJ6572rwCy5uph+nV11+5QcMg7YOYBQNMB7S7AI+YrhSDLjMBjuF2tm12F515lpMH2PC2EyBP/7MPABZeaDnbAqCHAdRXUzTAtqD5IotfGxhkdoLm1vhI2t3JIqRmEStPgW4L9jngkKMWnXDKGedc9I7f/B/ayMjr+UF+tK2e5+IL5DfttsQ0otimbHDRqBdc8p4/HOl5OoUTDeLAVo3/IceD8TfI+GX8OX4av41LFNIHdlvAfz/8u/Tv4tOuL/bP40CiOQDOUgBwn51n62mnfBYcQOwOPxaE1dZZY6e91ttsi5V2WWXeWhvN2WC7bRbsAYaGgYVHRhGGioWNg4tHQEElXAQ1DaNIJmZRDthkkZWTi0eCZCn8UmXJliNXngIVqlSrUatOsyVatOowacxycBBQSDAIKCFICEIRMdHQMeDwSQiJyIhJGWjp6FkoBcWJFsMulo2DWxIvn0SZ0mUIiJevRKEiZYqValKvQaM2ldrJlQMBjf9tA8ArAOJmgC8BWz0EALteBAD5ESA+BMjrkDkU3C/AEnMX8YBqUUwSced0FjuFyrm310xAOHCyOQ4DTm8ATwatDli6Ntdkr9ezYhjCygMBiBCjaM8BY2nOnLCoU7sB68BI9Ma5ah5lJo8wvAKSORJTEyrAktVpVLJQmGCOjzJKEiIzYgiEcCwhjaYkCELYLBPBKtfx03y6eDnBHoLjU9SpPIqZwA3Rh9gUOGNIWFgI287KMhEIMjxWQ0CziQIKF6+O8kWHc31mraM4w4DFEgivtwvPCbJrEgQYAY+AkxBoIppTRItx0qJENG0UTcunsXG4qKnNS4gqCbhUitbRSbh69JVKizC8RMRWSfA0/Iul3o0H2XBoaHyEErZYkhUCHI4cRiFISNyrl2SM0cndu6Aifc1fI00bXCmhFS9WJm6lgKfAd/8PMJFve3oZH0RRD55m3b3dVIljBNEMcAwHLIOK9IywRWU7NGadOHRItcQNA6TZSp6uJmuFLffTgb0AW6VeCaKa/jyiImkwlX82I7uGb1OctDjUiaIJWeYJtERcZ925G86TMfFh4gz+RW4JlGScasbZa6A5ptixe1cyYwwErSU2I2tTA8wiZVPZ4S8fCwhUPEsz5gfMRstMxQNgF1V5pY/x2fK6TRBzrjbeqGSEda/y0EkCwFvuahOdlpxqpSaptSLgzzYIfqbxW0C600gH2q0GAPbAC1+I6xJgHSGBz2WZCjXX9hvAIapqkIQh3chDZ+tkhkfcUcMLIa9WIQGQSD1dqJWE60/CL+DbOFJpAXfnYtkKbllHItECXbuSUkxhjDgIDNtGO6H+RFOh53BplvL8b5L5i1/UQ8IGv/Xyig8XWjs1VAIYRZyYOb7+Wno22XfQnZdFFE8p2adjFUN++SrqkkTQiq3hi0k1dhp4FuDqkfn2vYyGgJYee5pxFSbuMp9hWIULCxU7JWt0tNXdJ84YjZGKgl/ElR6ng+/l1XZgcRhI6Lml2OhZY4OoBcwXznU3uN6muYiU+OIQ6bsAR3jWzQDHu7eYwjt29FG9HMeVtPFJK7Hx9pHDW6kxv2upeAKcQdxF0+UR6opeOdAhatBgSBh+0SKCNcsaJbv4x3iAlMPLxr52bMiz84PJJbPnwygGHJLbnvZvxVcsowhyTFwREVIeu0CSD+fauHIlGZ4ghbkrwRKtOICzQA5DsJi7OBSyph6FQyZUkCAOl0r2ARI1l2GUAW6tk/M46DWJq2MsXQMeT5xuNiRqafTllXenqz0F+mYBNwbC7J1abDucJweEwfRC+g20Yj2S/D4QzifesKYbuKcz15y6WUZK3tBdP1KywkF2j5D0sAK87+4l7hkzAxyGakvbMhVXgKtlG5SmKd0BMGImU7LOVKsnnqUtrqZg9CyUPgfRrRbxonP5ZReGrn7ISt4VN2n1s9kAn/J9h9DQwCQxTfP626ssY+TFTXojgjfGqiUp18KyJTxVuQxt0kHKdW/9CJmPQoe+lNgcSii0sRWcSZSjcm1XuEJg1xNxaGz8hSYJDDfhH/vGYuw48FPJPTteYmmBdNttCoSLY/MGWsCJC7UNjpCSVJTbEnstxN9awtwQ8eaRLLz67j3OE2UMcwqmedUJTdoJdDn0te2Lu4hUe0xbxZC8ptplut0sYJOot2PL55myY0GnK6tdGl9hO20tD6xkpGttC40OSPShlKIK5D7XjQyqqWGwDB4Tcqws4lq0MECUaTzfKgkRQWqnYb8Wsq7BVHkaY6HHH1/7u9TP/KNgtY2JR+6Rwb+IP2Y+wzQAE7sQekMDK7h6o8Z+WUTlbuQL9VmmA3iaxfTPPfREDacjRygX3ZQhOReGAeaCZTNfj2P2LabqCnbJmsLaA5MZPwtdlaY6ZAPbpMCH4cL7uKhV9hmkqlmwHIf0EYBMUHAuUlgrKQLtjp5TZ2HQFS/ebjsiRRCxCs0T7IE/bO67Emn5k2UkbYXx7kQcSgvL23fRRUhtXa00hKgzDQqJTSDcAsflnXWRIy4JuWZoTULeMqSclxQ7A1s4XMeb9dumdeS2hvp3hV4WkKw2iEzGDEyyn9pGC1C6XSLtH4yVfPR+eWReUwuovs/FVo+BZwFafzrtjH9R4suptB0IZUM0CgKDiHDTS5M7QGKzG+seEFL5I5JCgKM4O6ZIQnpn+aNmSmVdGnMBqEtwFArbHqMQ59LBYPEC35C02uXZrMV95EIDrM7bCVGfJOjkiPs6kwRSlJYQfL1VRfOBqUCKjLQhWTdwoHBbaERFG8IB2JXnUuVyMslUJXg9vlA78CfVljUCzM9xhg5Dr1/9GklmAGh/aD+2ir/DQuexEecpQ7m2JGAe0QgwVjiGUk+LLgwm6EOVpwzn4tXC4c2l32add+Qu6LP3idF9G6drbOFQ9qxn3DZViOdY61QP1PIACCbNnbvA5oMZlvTsYigqF6y5Yqxx2d0pl8/CsQp9Di2JKy4Aa8IcXJ8rguTf7JF5qiVkUxK0P0TleyanQqE9A/OSeU65FEnFZ4jFkqEYQe6A43VgFHJXbVI4u29KWyYnnXcSuYBVxbrC94j5DlVVcxVMCBhXg6EGM4NjqxWaQHSHKLHbB4Se4G7OsuBORGo2olEwNVKtIOCgzH3ffMEldvceah337EqJ9dfBSSQRrqosgQtr3MAAWDPLb77OOAfzKlI15tQUr2yVP/JlcP+7fk1YLvsxXIOMsBvgfJK8WLBREfNQUJq4dVP+qTVk42bpt2DMRQHfsOAs3Na/M7ZXdMznygwhnmxh+R4OIBEaZIhsXd9hJWDCpv+IOvgG4MArC0pwpzU+tWMHIPXxu6jxQnsAUvJ1cFgFlIa4Wpqo0Bi2jDEq7YvVZxxjDLAK+V0+YF/cilVKPUELslKn5VlCBaKtf41+PhRpCrZAftiX3BHlT8PjEEFiohrn5yKrjbdvdeohwQT7BfXGzswukZe70Ft0WqYDNBrqfmKozXCQYjz1scWjksRI0lh90snWwixBI+U4Maiyz3nP9LvECcYfUsLVGmh6ewGsAE+1DecJa3GFbfwLEB3L9WCd+9Dn272gQuRxuT3v01zOwuO8Z1tYd3i50sjchnOCgYLsIhhbQ1R9Xt1TQqhGeTDywW0SdbWsMSO44MNYxfpUXuOTNBoHrLXIVkfGOdFbY1O5dl24oMuNyM56VFTQvIHMxEin6Iz/NsshuFCauU+7ySI0YGjbkO7D/KnbNMTF5LB+N9OaW03FKwKgCwjfHWIz0RkNLdZJjGJD6z2sMUa+F6NwN4ShwHOO2/hiHGyEbi169ckhs5+PErYkhXCl+h9x84AI931t9m4qY2DJjqjKupJ6u6J/BMDU0CDFF1JcVL2M90Q9kDgguhmuMHv6SH4+QjQQ8bwwapV6w6QgaN+WYoxY7AHz0L2cHIPIFoPVi1DC2CJO2ncTlNoaViOlNTySM2IxHGVxaVSBsCTLIrO4x7ZJYnutJ7xqD30d0g+EENae7/9YsKdjlvNgqFKTqyaXCFqeHMZWZKKtUgySl44z7qp8UWkzrDTWh2+DkXRERxPmqbnwOGrmV1+4RMRFRNKmQFzvyMlBuKGQYZOk3Q0x2GuPDmGzGPUe8Odxu+KbUl9q2zQ/CpSKXMX65NqHbFaxgbwa50kgnTC63c+l/jQ5i2Qi0k5brFBuUsjHvqlh7C4lGN3SUOJZvyZ38wyeF5s7amFmv5ubxTT0TQrPELGQsF7PWDTdikiBVDYL/eaBB7qyKrJ2raMjtS6bCelAk24UOqBTxFegJKMaqLW3zTJjCjqlHkCMRaWgP+FP24upzryHzjgaNADQ5rydpiDUhqT0JUMTfL4JUYdI3x+HhOxhW90TNtGpEbbFGNhhT2QsBik5wNIqfnLT07l0MJeoMIUCUBRDHQMQ6Urnd03nQ1R91438Nz0dkgL8geCppNbV3Fi/PYS1aurEhcE0LTyzKlhUDCpNbSMm+/mqjd9KArvhRodhaMmK6gZ2Er57vERWOAO+dmXjEJXm/QYrQaU6m5uTuWvKmkmskmjqbAg8jx8gvbZEK6rWvq/KMKAX9PBjrzl6ZQNVoG7lv+w/OUYTm6cY7tFHlQSmmPyALNCQ/qs6g3d7xuzaa/SIx7w51YOCXIWsUcTYcS+HpQobEU7f78SgDFU9SNI03OmZM1UcOknQKwg1NisILgjE5XroZy9Go2SkTYcCqNzP5KMsNzPLsJ9ZRfw8RMg5jhTE9ttuCilreQ8RBy6PJjkn7jdCFKTD0lzQ26zenLB2q3M45b9UGqFAU2FQFetHRB/uGmyFpoabNSD2Tlr5/V4kdLjhTIhS5GEPEyq4Ri1vPGeE7JcqhZjMPK9Z5GchIZPI7ClFZoK8A+D5SZQy3dcF67J9JX8w33I6QgyVyc2c293OvaQWUeNLiRUbTOYRco5Vj8z3ShwtIs0vIdrBJj06MpGeeJ4T3NznZ1ggnhqq4C5fVzHD+0m7aeE3p07Q+qWz1iolRUv7z3TFtv4Fx7gUN1TQBpOTg8rlXI4JtVaosOUNu0FZatDKOXjKJMKTYfmpp4CCAKeDUDfVLVNgPIcw9JJpU1ab8hB0WJgyWNdLwfc4vseOhoJvDGw9BRzDG5E0dh6lhhfIRicGaAoGj+TkDrclvq12Pl6W8c4rxfQwiohZRuI6r0ZpgYaiBrRsdgxl3R44/mlG9QPUrKzQ0nJUPXzYxif3jA9oanmLxox4w6micY3XtyK38p0Gg32PqZelYSjUQITiuc4T1UaJvLylKsDzWIFtRdB47oIsLG2bSuSU4Ff/OWNX6MBgGMJIBu76Pmxxn4gf4bW+SiKXfbFoNgSprpRKefkFZI4vVz0Dty7L4YHzTUI0UBfn0m97tJ0p8Q/H8y0MYaZs+iRl7Qo/EiwYMgaorPz+TeNiN1R/kNTTucOghcUtqEnBLkSNZxgpOdi+DtuAUeYpC6U9qCQbGCj2wDCSnoPkmaplCxf3/xbRUvHile//YcD3zt7OyReJfx3c3MgVfJ1AX1sGNTdCvb+SDQwnAL678eI6JHfZbCJZ7dk3fu9Fi3EXzN0OHOpQJhX2pfzZMFp+TBRNViPKatgakj0cbCiqZLx4q4E0t74je4XfRgQF2iDoA4q3Xaob5/PdbiZlieVBL9RIhJapP9jTQJ+o0JZUz3Z9BQCAQCIb3WIoPgC7ZBsKYY0ZADg+SkPaJx+zjjPm7oebj8nOHCbz0XGVh7La+xEZ1UOCzaOWMbr8NJ0WX5/UNBvDSSuGTCjkIov2Q/GU9uIHvO4b6KVrmw1U/3+qCKPnsIrtcY6QQP9FSfpWekGISuTc0NbUzbm3B+Te+fGLWu+frXUfWMwFXu1r6kh+dWrGsHhchPt4qPrgPOleJnHeX04+ztTxJrTH2ZTpoLhxKEBUO93z/OgRPze6KDOhodwQjORtES0YtIeGwZilnDGbWd/Ol04fgMGYIAR2wAU6HauaHF2ZeU7vt2K7qNsESdkOuFPFVqvCdaHKIK2BNC9zlWKUqduNp7Qu8tMG6aDBVvsiZikLOQYtwH3IU5nzQ40k7E803FEa/ozcmQrmcUzAkwwwA2n4E42BdYM+gunBPAL4yXH489DPCPkLOfOzd5LK15cEhfxXYqKxd3yk6254xkRZtYL9ldh5ljdyxWmm7o/OiZYXcBUYiyilWeRv9lacfSDJGBV7234iJPIEOi41vsfUFjcJ1K61gr5zXBJgsjAifriXGeYQNdLdcqK6+pfXL5J8EpHPmsX39T7KYZjekaxXziUYJt2Qt0s4pQUy+xwxrScsrd8qbKq7ngD2+Faxc6wDKQcVDRhRHWDWP2dAkSKgjisGElKBDbRczDPS81CygkseZJMzQMfATDa40LoCsgJiccndkWYBj9HxDk0q0hbAVyMTxeEeBCzd0w7aDMq/nL4iPMu+jxuS+AZTsK55Yfg3/1F9k21SlTGCwTZ9wZX3ST0/on4R4t+os1LwqeeR0XmbNBKpg+GHjuSCWWwWHhKv0DhNB+kMmT3naOwoYKa1SlCU7CY+En4ARh+VfPxDfNguqltZHGHPstTHFSxRDh8bWZh/F1YzD6tAkX7+PSs0llOGTqFDYVuo6aQxRXeiouECIWIPqtQGnUa9IZ3pWmopCCxXOcmH4+acYRUAduf+noO727IzN6YUb6pjEZ3NLGputdAalpJmzliy8CiNnJdTOLTGmZpwOCxbq0DyapSe5TnXxcV3cQ+QRcrz0lYgLrX4UeFKTKqospAl9Gq6yvLzeSXsRFck869qzOqZDHGmkLmfAKcJneHFdpLiIuL3x39TOEpZqSJ8KQKgPu8JxEfPDfF3X1WcP3MNzB0cbvtjZ4IZypem4JqJwM8WxrLCh76V8x0j0y/eH68TNUJfw+fWHUqlDPFJlH5ARL7yuGAocpYiOh2j7GVjviTB64ASfseDDMBXbeXcelgKT6bm48/ixPtSHQguDHKDEGTzf1A0kzfcdCvEsnjmddAqKA+UCyoUd0AEgwbc91coF+pAJWxmGdzu2Ak7dhpR5WizbI9Q+BGjNfAMiSENGiZVe5Cw8zg7xBxCvwjdcMCA8IjEoe7U9fRXwFGQDVA/2VvLCfv9b5aeLMU3shCDmN+i1qKKgPNQlSAX9vw88xbXWqaevv9Ly31aaDGaCVky7dZKfU5+WRwW9WaWYJOWZrHQgWjwhgdCr0sEsgsMTqjf9G4aiXzAn40YU8W9+ELJaOmzPv1iZfaauNylqTFTVLh1m3a8qq4zbdd87dc1vbm75v01eYVcvs3SlZVH/eYZ3+xTck8wqUg+YNRcrcTJGamJNPBxUKkwHTQJ7F3k7A3H/5bHAK4DjuF/IRGJoHiaTxLOLawiYqmgTQMN+2EhdsSrx+HTfEUckAGrvzPaBxFBl0HhACPjW/L7/pXoei/wkOmvFjMms4h/Ux/9LVLKXZx0ePhKwm3UhIldc0oOjdY5PgWw2RQEXjhDkEYqKYghLJB5os2SWGLygd6EQZ6NWWWZSglzsFMGygcVaoJM06sJ1F+SbIY9PoYudtFwg9+7PAzAUKpWV5qmFd3pDF0jr5RU/Wvwsz0TDVNCsRpaJYX2o4NGglnQUIdwI5Yh7tH5DhEtNQKTHKch2wvexTRKHxu8+rzXR86eakYPyzjhdPvKyszQJ0qZ27BkqPYL4FRgUEjlBFEhX/ZwlPDSvKI02BUc4k51I7LxCodoa2NH5MReAhVj3rS5IfsRhYjn253IY1KXiromPTTKDyUEIWogttz1SC4xLQodkRVRDYl9qVk2QcNt63AHKMwaC9sOO+xvyQattwvVq2VUK5oVCl7ZCZGHYFUrtCyxQ4LGFJQ+F/j7ICY86dnm9e78a+byjyjSw8YC5HJYkEXoYZRvRyJ/2aGgTq2AfUoBROsfBoB8BkpdzMuTyC+qiWxIGnwleHUmHQCXpYZ9d55kNFWF5rNWnKi4EEaAIeJD0tAdoAAm6w8u++OnhjuMXqZMzQDZ8LksDbG1qW3uaX/SSUBnuPZ4TV3YlePLmV/Oj45+dWaSPQN+fy3j+6GVkF9Yr5XWvzE6mnljQ11p4+WCjnNjddWP9o8UAqSwMfnFIoOLht35Kx1xmByZH5We/kXZe5tovw7OLBmIgzggFyoJJ1D0u1LGjcliQ3rMZ8OLM4yX8+O7Ee9lNc9vzRc3vJ7fenrUY1z9TXDn0fLgpbF03Y4Mb6Dj0jzw2ePlaxIpUiCYenl3nHkwgkj+cwRzgNJqh4UzRBRbrGTQuzk8cuybM1PsmQ/XMn4enIsbUzWn/Qyz87rZuA0Wy358ZB/kEtSt+cir4svsVDWS1psB0ZIoT8h4dqoB/3APeTnwJdSUsxMxuAnmtBKIq4yDZf6dtI8JpBMTQDe8vqQ/ytp4saD19Eiw8t7eoQJgz/dLMVvllUMYuACE2Jitr+I+O712x8LelR9D6xbxRhQjHGhFdKkOUUVN1AJUNelR3v4Q1sCMxGc+aWqsT8zpqekzbZFRIMgSxN/v7WMBvFv5MDtXyWGFywE38PPvLoldxrHhQdCrv3zkQEkuXNyyoTNqBSBc7zupTXaAUJ8g9Vuu5TdmNWZ1OSdCSYBrIVh8RCh/yaVXfHAysSfC41JvUwfWfbChlXXl2GzY95vHx16eXsGa+b1um5dfYvCVfK0Nv07VpCX9B1/+iat0qrnq3f3jhcHFmuDNyWWBN9ZVlQHJsi+kbGW8EqeNw9ERLnQl9uFwadhW0eEDF+J7o5P7CgPxrcuqBLXLBRenkxEFrwSSIxa6BgmkqPzBlgbbCDuW1ctzgHLDvsa7rCsG0vD3bav9IkemKSZyubwiHo0jYQAbZmfWIJloexgK/rnhA3BPlHVUkxfP487ncpMpS/kbYxpb8yYG796qDzqqY83V0UmMSjnrVYQjwejRTbhLG6Mkb+Zz0skd7DXmuvaSpRu33UmKB+TyNZd40tK7eiyKBDouLjXW4vTqt+XJzmjDLshWlPiOijJVR8Z//k0tphoOeqzGpukA8yD3G6mQbwcl66o8tULl0eX1EO77miWJkTlRocdwxEOeOykhHc3TnbBazm/QXsaqcJuQynEa4FSIhVTAbDwegxpEIUu0AKri0t0B+e/nx0YCh/cX4SNKfBsr9stQlX9z+ekFO5oeqmr/j3LLcBt+m2AkqGKFAGE1n1NDD1Db4vVceR+vOvW/IEVIlzQxFoiT6ExaK7kxx/pO5HvN+rfpLmUyi6Jz02nfF2VHldSonRGsseQ7ZiYnNP6ojzlH245ODykM8fqiP66p0V2IJXo3UONDqylbYuK0P24nZJS2YbxUMvUPMkNgJxagfdhABHDKnX02rve/k3fPrdap6lnWnBzPrHnGvC65Uuz3vuQkEN1Mv1KlSrMxYldH9a/juUuEGQ3TIol9aUOuvtSzw8IVeMiBzC3W6Yja97HRw2vkeRG5Lh55mB5WTHN75gxl9d6pLMDYazTBq92vtjAGwywCQ1hoG0eduddU3/bpvuzXrAO6JudIQo4wbFCIGO2fo4pyZxVLXjZ9z8t2C224kG04GsW4UxoPfAadg9m2wTz2StQziyZW0SlzmAq9S4rXNV1QlsqMIwhgAKGT6B06zQkB7fhxuiwbZAd70vxwwT9ixWzIKVlk6mji4NNXCsuxLICI7u6ewEkjVQZJtohoaMUCcQ8/2KsSiJ12pUyaYtYWaH1FCy35GQfqGk7VrhwK/eDgQMmu1pJTRTKMH9WPiFdYBUJU+N1QXstRzcBQxB7SKNfrr7LIq7e35BwvjEks6TTGAUUgMENXiIsZKtkfNORaiu8MzZfNpSVNZ+05vP/a6yWZkGB+sIudrEnFTd8t24UNZ1gtvbbdNF/rgVpVpaHlavd08sakstkSw2FqmeKh07+UV3UuIShOIDlVWwjEV1E/ZiouJm+N/kYvTjeZw4x7p7rU2fFtSNu+qJr2YTfIK0yplCQAHpSHEmLhRZPVrIqGLBDZFv5Mhv05PSwXXAE5uPrqEnnU2fPffnV4w7N3q0pWOuGVg5+WRTRLSh1jBMpYTExGWadJZ+yLvgFOHwDefWo6qQh7rRRvFfz8s/DIvf13d9Xi7m1d4elweTp9QkoCNXSSmTYTzzemLytK2BAo81avkw6zujfjR2iceeHPw7zq9CKisPXcdE6/3hRduVIb7szIBHFArGASe70UWA1ah+mGHAJGeGN68vFQfJ1qSZji+Olv70zX/3pv7RRwhdOp8Fg7uxJlQosrpqvKay6dzU7aVJ5m61pi8wBqqKzyM8MHWexnpDs1Z6qb3xweyb+zu7nO2h9b00xLyFkCzq5vvTnEIbN38iTvvBiJbK9pUH/+FlP7ifny3v2upIpMOdEhVt2gsL9DLPu0SpOQ+hE2UD0zmR4dqPWrW81pRcEVEV7AkPoiWVuEs46Un25Zcq1jfwPkrdm55HWJpXPlerZrQ8G7nLLXrW2SRIo+5DAhFP5G4tqYCnny/gFjQD3paV2Nq6P0IcWeWuDO6mnwm6NrglvIqkGeyOHVePf+gz9zVsBmTL+dgBj1Zywv4PE72FLxx1XyFI9S8B+VHNv3sIlWU/ASueu7QVcIQ2ZwVEqOopxUFGQINgtkY+oQuHprwKR9SiisjIKswUOrgQZCqB8aw2gQCbfRV8JQrP92pq8GKpnarNAueAXErTkUcDeJNCfOffTBTMbvB9b3lZ0dbrmUTXwP60MX48eke2rby6U9jLI4o26nCPWiYqWXlCa/WJ3rHv4fnWq8rDAw2XMetHr1UEcn8Pu9VEHf0py2qCaDJ0X4DiL1OIeNjPsEuQFx+SitIJ9K1wugKbDD8I110M7RlKxatebL16iXUW44uFziEoq2qu2YVkxTDEB5sq5Q7lFHc7CIMPnxOMjIDxsZ4iN7Buahsj1ejkiHmIJ6EJtj7CFtmC41IBJM+taPGbhcKPdqozlsKk120gZ2ngYlqkQwBff48TcjAyKHYUTOmRpbKXwb2AOOAR30CawWJ7oVM+oC0L8WYxrkBOwfRdwFAh65CvmgATfy9xfJoYq/NGhpYXW2P+5TdmoyN//A0i0Z5eQXH4ZojHYR9cV6aMq1Ot7FL2JBQK1MFS9gkH4gAxkQpNOPB+48vyGRfu8UMsty+4Au4InXIUyV0NEC4PFlQRGjh4Nlnj+PDgGSS78zm5qDCfHiQonfjUati4nVieNZqoY4EcIVAlGgwzsCSZG+DLEgzSM1wYJEdugL9utejGpjChoBJwALkKiFTuQ428ux1hLfjnOkyxXGZcbiliyss6SqL9Jw9NJfiOPhf6rpezbSBTu2LuwUA5oWbsWXM4p6bWXWzwKQH5TI5nZ3FyNdHMtGpTIOlAAZR68wcnL4c5KkZZRCOSW5tWnUrL4wr//orhhhZfyj0fO3bduzTQS0hZ1d3fhZ45HOZ5eqmpce7M77bONUy8fnemqInqjJ6iSbf7WjcFlhSuKargK7b9jrX14MjD6L3Oc80vn0YmVje15MQ7yZGeWnP32pUsv2l9B4eJ7vCfKapLsTiZMExRMF/+gM8OzA77/WruX6atcO8dJX2fNGig2KOmarZOJh4x6kSekdik+dAPKsrPazQDHhBVtbFGIdy15sisuJ6igY1Otqz61ukvT+ulLVUrR9wFwTXX+razhlQ2LZXJmaCK36P2fpJcdeTtnr7nqRnSiMxVGiBh0T3sBUUW7sZH2SQ5X/oOkssM2X9+pq2wj5TdzI2hwBrUWVDtRsAul3sZ31gW6RafWjYP3p1kNLwG9Nr9Amo/9J96IaUHVuSTRbrkSkZE5dh5/iInJg0uCRpODW9q7DfZsE2ZQ/mLB/ADmqFnVkmWEpQ7UXcIBO6UJH7rHxkBpWCfxfMMhPb1iqtly/8NW3RzY++6yysbWZhHAfWcMkDDbnb8jKna/qmWlvMvbFvPM9cH/rvuzE5oiI1gPDufcb11T/fGJqSdrx4q6TPR7YNRT+5T32CA8vbVWFkAZnbzdMKN6sYCV359iTh/0pc0VO02BregCgZ+CH9x4RovShT6EMjcWh4uIZ0QIz+grxF35QRBZF5QrjWhrH7br0vrhiztxUGIndf2pCTwVMnO1JdaG6J3iYdhb4wGDoZGQIMUxdIsmLa6Os0zTWF7b2HXqzoNxepTcHtH5qeXjY+yp1vDBB16XN9CtV9shSViYhSB6S5+UkFs/1vmmJB/iq7TuZZokDlARPgCbsg1zMpx/bNOhpd7hanK3Ldu0qQyC7EXWEXfrh/oa+2kP7MguTl0baC016aTKXtdkiXiMvlbgSIzmwBJIzpIzYK8stTPdosj0RE5+XmJTcJJ5pvoZ0GPcE3gwGPvnlRy0dN/4hizVYT+FlwsA9kk/N2DMKei0mUzYhKgXN+sGpbLpLqlig6yFAPjijbCpim9OSEc0A0ZlChbOo0C5cUr+V8THo2BTCDRCep5IqsT5spd7LXsjoTCzsLjfm0JF7Q8Fhyj8ZVK8YBGEhTgk5n2Md8XouISF9adCpvzYee6+G+sS8OsIUD7y8pFjlfd/UD6r7aEgR12+vCWN8EkEmRjbJ/SLPK3OlZe3awkxugiXcwpPHogFtKrdpnNkW5s8drU/SdXcx2YaeJdypg2R2UBlCi8CrJAtxpgRHoKbRtRcI8CGISRUtapLNfh1Rnl7ZilmpLtXHr0kr2xTcw0qTwnaHGpqktLe8vL7WZUivZNsg5eGuJQD3OWLumo7/n5ioW3moSXLmc5u37KqbcuVYo682WZ5PftYoSjowEB2VmtZafEBZKFEE0iEEL1+g5dKSRzRB23LAtOzmIIuaL3MYEohMpMJmaxD6muOnu7+b8xUpJT42AaKnQNOfKZNS5w3ts1XOveuPEwh3eGEBbPjw2m5JQG7v9xjEwLpPKWvDJYwkhoYxnpojELKytFinYcg7ljj8tTYQd1rt2cgP4Q9DKI9wLgZ9eJFBHkm9grXawJRMsEBvR+N1dO+4fyyxv/iAl88yVqIWShEqgPNkMDCIbC1TMRlEvQXVji5HVcOc+aHXiGERdF1NyOjeXPRJ9OCqPnhFjAW2DN5TIEJmYisoFHBGpGSWpZQg7OhceiasH5oDy4KXQMLZnXLpZiYrfZWcffPwNzOccVHDyxBUCddRJslT8wxuhwbHKtt5DS4B7M2fV0mlb/zMysnqDDvchRV5wQmrLZ8+oLdWDKOb1oGaT6AshQ6YmOMBvVYihiF24+rVmPepEc/JdY1aTMg8YS6dlSOnxXyH3wkS3t372TpmATtbz2O9LwJBDEA1dYXsEvP8QUwIEEny3tYIo4Y50nj1rrdK1a6E2jhLi3diYGJVWbwcHbMxFWtV/KYEmB/4sLIQa+IJc01gyJUwXgaoSU9J9P14W1ym1/QynWOMT5SwyLfzBRXlF06Kw2RmRneVK9qtA8ZzVy/Lu5q7vPTy5pLMgpEGz+W+5uxLs83p57+UNrjtSmNNrCMYa9B3ZKSq9PmOyGZ7+HsyL70z6LLYDcQL18TAb+gv9i7jHnq1MuqH1au3fzDfqHh8dVz57a5V1J9FmdfX15Q1nS9rvjm7pPytXUOFDceqq++vAWCBc4m5hQkk3J+ZMnAP7gvMoxARMIv2JiunWVZpe2sK+hb6GEkBnrBcH0xvogOmY460BkyIvZlEiB1CDaFi8fBsapTAF5fy6Z7I9uIbTaHJMQVWe6SbX6jnbQ4LO3o2FFwS7J4zOhImfdkTuUHvD+XvpmxU5y07yTG+ximEu12h5Qw7dWkz8PWjr4Ume65MQ/7zXK6CpLys9Q4V5HFybNP7wEk/2K3r9I/KkpB492iYf1XNJZ2tpbm5U+DOTkzMyXsji1zXrJqwvbv7oTwa6apkYD07Q1mn4HKUCUBcLQmKhLySROTp9PjUAWpjJvabTvR9EQlhpoIgAZSFr6Suy7JqIckQr8oek6bBHeIwqn6DjyJmru4mYCAA9WddzKF7yaG3Dv5xb23bzbulI61XkypZY2VkwubwJ2MRCyfy2jn6upqAT2gjp38T6RQZiYqtkD2QZZgd/OH/J+HLU9qQA4i4cFmqRXePT+Oe6ETvvgzPm53FCwoA7rW8/wxxto2x7fZex4J7VdFiDzEzErw04+GWgXpvZayu1r5y6odn0z073qzL//1J5eDEdnM4qzVbyfXWVZrnYvPm4jM6HAChrddRrUsS1wsFqYWgj29+gOBxE7RtoWv/n70Od5WR7belEobNRHSEk5yGuNXAqjjZ1bTjx9da9/kuUWYWzTnZ6hFHe5a085DB58l7YarKuOcp8a0dT89O75T52urbk11ZxizJFv6ZNHWXIMcJoFV5Gj+K0lSkjXVHrUopD2NHDDF3iSyIaKCmKq7uXmDizEz1mvlbmfG5s1kZe1rg3ePl10zZyGomfBdsN+6JaD0vRN8nwYS0oFNwQeyq7KkdvXQuMl7TU5LkMnZLspJNmjLflNwM0K4p/hSdM5NyVW92vMb4W27MeSV/bc/3EnzshZKpi7OfA6D2U8nFRckk/KYXUlAqqh3pRVeidwEjaG8y68FmIpzf3BNRzSgPKg0zBM73rubB+TFUc+oW6l/fBl97IGGa+R75yjesKdWjTUejU70xJgWlf88aYmiosR8N8hYXDcgN5jZLUtCV4T/XtDewxOB+QrWaxzFrYRDhw6+tTNkFCfoRCLlEQFK3IjRBmBiAvS3zVrA2r4WEfY17gP4ggS0lIF/E0uMTcheNHnVzlzR1u7pTnJP2J4K8mmbpyJqP0OQWluex1FnFlS51Wp7HFpBs7d7zynqD4rKTeIxEMrXiBDxbBfz8ygTPex1RVAvTtCLUdodVmZ1IH/W9K+1Jm0X6gry0HFXKGnc81+oWZsq2jKz/XvXE5FNkP7D2jo87tuQXF95vQFwOM90On7cpc/EZci/mUCKokktYxJNB4BTkZ1gRucSmV8XhVQyzwS0n/SLQP4a1wLv2zWBRnwCzp7Q84dGOVnk3OY9GWFvz0Zm8kIhOILdOXFzuRcEbN/iGHwSTtVdAXpRUPk52rYmfNTdMjb8RlRERHy+pN5a4uVEJ3oCMHf25vbNzoCu1nhdXlLvkw5whQ/G/ww55F7PABEfG+VwuJPN3BZ01Fl5PM8Zl0+qFPHtIBKB6DE7rjreky1Y7VHsgX+6T2hbPefNuY7cObd3YlndkW1FF7vqolDDREwLW8n7JoqhzpT8/TOpK1UdJ9r+vSJLjpM2gfkgQ0cOomHbXxWbDy2Fa4SuVyNRfgUbK2lUo8nqYk/4MxfgzdrYrrtUOMVp9BKEY6yMD8ljODywW4AVtvQBoTHDGJhlNUJv/RfGXq6w7cmaEjghuIBxvlfxaax5OThTPntnNW3DO/ZUeDM6cinA5Ix3V115Nx4v6kUYhjEFz5Otaaf8CHQmtMWPAW0TxSawNrt3pGNgXCDY7WR4h8fJDdgYqTMcgrTDWpB/NlvabKHHHqt5oukmgzg5R5e9v+vLdJ+LzJzKywnlmLY9Z8viKS5F9uVu2I/GJHEtsoYVxy3n5wvI9wO1TiyTGqrzNcd77VSFqIYcU4Xlz7TV8620R9goZmK412DL5W67RkNcoNrlT4eEDDZsYNjb/3qkwndzmjtYkqQFr4F/5qy23+cz/5wsjXv+meFTh1+WZs0PFIp/SUnkZePzqlIIsQtQWh/7OUvnEMnG0gcyjWKCJ7GG+9pwkNUKIbdPbjF4F53SdFojciVp8JLN92qk0nZbT3lkqoEOUyFABUVgeFs7OTgbyPqASKFI5vmY/w/CZUFmMyPJnpEITw09FkfQUsgQ1CAfKReBr2NJvRWo79xmE4EngZGnE1LJMu/pG6l47DvJ/PMUlkTIDaeAngnrbBiJXHhGutsvScLSzJD9ogAxsZD5j0LlsBnD9n6A/YM2/+JEE8aG10zvmZXAvl6QFJRAwrR4eJgMRkixN3JGYpGTpWyfmaGlEPJlD1OBbE26v16+rZZC2Y8lXsKLySWwGLAAATp2VwPUxfuJSNYJn+6h/AsQ1j+/IQvhzEqXMp8qPTLDc5D1weFRbfePHv2Q7jYYVMtLv3J0bPI1N2PblUby6P1xpQGiUZOE/PD9LIpHagQ0pqzQ7HfHUG5qLRrVbncKMrBZjHpQIKvtKRt6r1jzJOK0Eck7mqPm0BbxkQ7MdweW8s1QovBUjb+LCT4dYWyFLIdFA3/nWGK8yW/veHUJKqGAjH00jaPYUvx7wEEMitMK4M+zesp2dX7Y1EUOz0yHKanNIbUFchztJ5VcDjre+/6DEg+JR7EzMfsbJFgL3GwVOiirdgPLD2iBGEFcpUrtU4W0pyALnNcQPF5E1QMyD3oXpaOv6ujqXtoNfEizPtL3W2u7TCsqqFbTq+7vukVc+rZv5iXRjKEzKSlIgEnsNuSciuHcZXTGPD6lt3Fw+7Z0nlNAhZjwn6nUjv3y0Z9uKaMv62jq3dim/NFieGbfY1uHlnIg405NHe/tKx0Gm+2/m94zApr8QXkS89Cv6othlM6qPYTl4eLGkMZrmdAgAeCEvxmEDw6Qk4UVlqOOO9jKZEhMGP271sNninCgg23bd8iNXd977jzTzkbfmU5cO/uxg689v7UBtmbc8Wxn5+9C22thBZ1QyyOe0cyktHQdXNmW9nJvPyOqasH4yQNn70R6h2W7vIB1uXdf/5acDMydizl3K+fSd1X8rGr73T7IzGK8KKfdbanrDt6gFL9wsvi0nqNgM8ql0NhuvBXgb6h5p2Jh6Pv/4lfMEXDF0gKjnlf2nUAkcLubb2IkbbuOcY0V4afAfzd7nO5jKW3qdvNCSeJliNG42br8mEW7nIp9d8KUTfBGNKjH4RqiNkC7jMxjoAH3zn7JsfcNeAOZqRt3/PKZJuvHLouHrayNBJwDY8wMA7DmQqn8GUaZE15f0a2BLFnVpuupNeC5dIS3CGpgeuuY3PZJRI4OUs4mJv5Jo75G/LCOT7QmFxsQI+wkknsqOioCNI2BLDsHpUNBQSMUsDLxolZI+9laiDT+ORimhID+3N7RJMymS39LA0GQ2KB5UWeC/Rle3iExUv/RhqIHJipaSip5iCSGFZKB8u7TaOJNy9vXwuYnm5N23x0NDw1zhlEd/K/w1xCwiwXscJyY/lYKavx7lCfOTYw5b9WFx91W0gUaAunaUd9sV2xCBekqHZt/2xDbu3TKEYUpw9ub/4w3qBFeimDunpPYuzq2VcmIFgCzqmZjnq4aVJ+MWhUFl0Mpnbj6nAIirmDIt4x15wFOa3pgs4yy+EbyPHHxAE+2Wk+h3P4lOeKjKft2TnJciAoi/LkrsMUamd1moLtyXIJLZO8n7Tn16myzTxZslTB+OrRAXRwLIFy3PX/yhsJDNkc6u7V2kAqoTf0xfE+vsYbC3EN8L5TxxE7W9GyzfDXYA3EqaZ6A2Q2+pdsQ2xEmSVtU3a8JqXqV2uFG+wuT9LSWv0SnJmhIxAZ0HDyGl+0RsAA3tjhaZjHkBQ0Rkomr8rInE/ArxWEOgVrA00oJkq5H329U5HI3NV1/9CQOA2jv8n3/3zK3J0LD41aqotU0XfGJwHosFMDIvNmY0a1TUEaGsr0WUKr9Wcp8MWuNLrOGcf5AUJop/hdeubTDaAOJv+kTcAZAsw7iQFdDaIuzhj34p5rNU3WDxBd+6piiAWznh6a8NRDu0MVaatDp1mtvD+3xamGzc39S0mDbtkHw4lpjaBSaOJfTdfMr1hJas7FiYHF1nk54Y4joxLQTEz8XA9uWqJp6M67LQbZ8yse3TFpPPMLZ9Nuxdztkm4m2XreZSroTpbKzg9N0c2XFGoHL9vrYkUMH0FNbu9BcAHNnOKzx3vShwfYi/ods+5fVtn/aF+QwDIrA9aU/jVAAMxsEsZMcZ0czFunjs1kGHo2/8b7cWHN2Hw/KPnc/pthY5fYrj/rcuPHGWmGC1gjMUOuIoovEux7hxGrvT4VP+F9J07QDnqC7HRgcL9kUhz2HBMR2OApzhmVDgv23KKbAd6ihIIBee2F2ss2OPzamz/ZhTZ9oBHItiK1c0oAzdtsm+Xl4f9d/r3ME8mTsg6cYBGNvLVc/eJAzZBYjb74qR/3dz4YcfisD3X2oepC7gQwAy7gFw3vi6efpr4HjRwuSq3SzpuMbG6rrSF8Dx2LMU6oOAfLTPQ0V5ub/AlYf6JPD3jqdeP77X+b5Ga8/XypXVjhctTGqaHzg7ftUBTjleeCbVtLDxvNL6gvDecdCmr1RxRyhxB+45QYv2je+qdrqk23V6wKwf+Sn3DQ6kmFgYJX7s87hE1VY7BMfzWtGRkhZvtUkziuI57dmh+ZweHwfRbTI4zTOKxsC4/zH1IAv0+KbezEP58TRsKui5t4ZU8OezWmXGhnJNojKD6e3PXvJSi/HRvyFjwU7w06Wck3WmzQjw32//3Ye3L5wu02cHE8GW5vMu/5rK/+k3qEnceX69Mr1SFvOA9qScecbej9EQZptBsHq2y023TUT1kY2V5W1TLdFIy7OQM8QguKFYq4rGUS/NV49V7R8zzWA9bP9TrSULkuB9Pzu01Ucm66aV7TfBJrKuLmmpapbGMAsyja8f7y4QX3HAYGy9yV//Cvf1Ri7yiGDV8QH57x59Kaku8unyf2DHOo8ZvxCMlfpjFgqGJd+37k5GjZvVbyjhtk3vaa6XgtUO3ZSE/Kau9wvUt2yn28pXLbNk+muNYEMZLpHwOiBHedyYfop26lbdmeirJeLUgytGfr0kanGkLdPpumbjJDGdoTKbwKamV1PfaWglJtp2I7VNYd2xumWqcfT/zXAEat+jcA561Gu/A32ma8uAzLe4OZfpnNVY4VZoKhuwo05azI/X8a6R9lQmWNRuN9PiZuSNaXbB3Hp/lJPCkkpF+bVy6U1TB5qqdBXv6cunDs+mX12uR2YqXX/oaF1EfadAx49u6zbU+MeeqrAnhVpTxlRTMqvJQmwY+2qZpamkrTK9KURlHLnu5/XMVdD4FZ8heHat2Nb7XFhhKD7tgioQoLYI3X4HDANB+20YGC4Mg4gInBlKHQbDiGgzvP6OwTFEFqcmzbq0CKpWow2PTDk5Hh3NHq9SPpnXV2hXr7Sj5/FqVDWS21TecQ2VT+WGNKqkklO47hfOLgLPWRctA5kht6gD31jKAV1tsdIO0EjHwFZtmjjvsN3kMydgu228dO+YEVotim2TThHK6xvIucpOder49MJTHZ/sVlYnN/rDR+UsPHOU53KWSppsBb+gno9ImEKkcpvmlqymJnF5BuRmbYIjmEq9CFd8NRfn55EEbGd3x3N08CtCuD9EbrmhzGHljpglJlFB6msylW667Q45BSWVu+6570FRzmuuVUXnoUeqPTbnqGP0XjKU67ytn3hbjXdYRLGK9q0YLkF16tVq1GCBm0eTeN9ICJiIS4pqzi3Ju9p0WKq9zOcdkaZTui49enXbrs+iDK8EZMoyKVtO6VdlyEAxUD4/l/adcwpdctm8rUjFRtmCn09UJpYLfomM8qvfosUUPWZYcdjwoOBCwaBxEDlghCAEEg8f1y5IOKsJoUyYZg9ULLbCJ94zw+kDH3s/MLE0lsXyWBEr5/argzqtUW9qBlTT1ZWPcfbXhDwqmcWGt2KqLuvAIY+I5sbAD2s0dg28tLQAf7yyjCq9AOeOKC9txn3r8aJ/lwCmpw6puKzyDwoBJKN+rxpDRsifmcqX7/Vpu6y+AgAAAA==) format('woff2'); unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; } </style><filter filterRes="100" id="shadow" x="0" y="0"><feGaussianBlur stdDeviation="2 2"/><feOffset dx="2" dy="2"/></filter> structsProduct Product ConcreteProduct ConcreteProduct Product->ConcreteProduct Creator Creator (v) FactoryMethod() ConcreteCreator ConcreteCreator FactoryMethod() Creator->ConcreteCreator ConcreteCreator->ConcreteProduct CREATED WITH YUML

This is all very abstract, so let's get a clearer idea of what that means with an example.

Initial Example

We have created code that can analyse imaging data from different types of instrument. However we still want to be able to interact with the imaging data in the same way, independent of how each instrument stores its data.

To do this we have created a GenericImage class which implements default methods for interacting with imaging data.

In [15]:
import matplotlib.pyplot as plt
import matplotlib.colors as colors


# Create some mocked helper functions so example runs
ImageNormalize = Mock()
source_stretch = Mock()
Image = Mock()


class GenericImage:
    def __init__(self, data, header):
        """Read image and populate image metadata"""
        self.data = data
        ...

    def text_summary(self):
        """Outputs table summary table of image metadata"""
        return "\n".join(f"Instrument: {self.instrument}",
                         f"Observation Date: {self.observation_date}",
                         f"Scale: {self.scale}",
                         )

    def plot(self):
        """Plot normalised and coloured image"""
        normalised_data = self._pre_process()
        colour_data = self._get_colour_image(normalised_data)
        # plot the image data the image data
        colour_data.plot()
        plt.colorbar()
        plt.show()

    def _pre_process(self):
        """
        Default preprocessing for an image.
        This can be normalisation or conversion from raw data into a
        2d image
        """
        # image normaliser not shown here, but used as an example
        normaliser = ImageNormalize(stretch=source_stretch(0.01), clip=False)
        return normaliser.normalise(self.data)

    def _get_colour_image(self, normalised_data):
        """
        Converts image data into coloured image
        based on colourmap for the instrument
        """
        normalised_data.plot_settings['cmap'] = plt.get_cmap('inferno')
        normalised_data.plot_settings['norm'] = colors.Normalize(
            0, normalised_data.max())
        return normalised_data

Implemented classes

Here are four example child classes that have implemented their own internal methods for normalising the image data and creating a coloured image. We can use these in exactly the same way as our GenericImage classes because of polymorphism, we're just using the same methods that exist in the parent class.

In [16]:
# Imaging for astronomical data


class AIAImage(GenericImage):
    """Atmospheric Imaging Assembly image reader"""
    def __init__(self, data, header):
        super().__init__(data, header)
        self.instrument = "AIA"
        ...

    def _pre_process(self):
        # image normaliser not shown here, but used as an example
        normaliser = ImageNormalize(stretch=source_stretch(0.01),
                                    clip=False)
        return normaliser.normalise(self.data)

    def _get_colour_image(self, normalised_data):
        normalised_data.plot_settings['cmap'] = plt.get_cmap('Greys_r')
        normalised_data.plot_settings['norm'] = colors.LogNorm(
            100, normalised_data.max())
        return normalised_data


class HIImage(GenericImage):
        """STEREO-SECCHI Heliospheric Imager (HI) reader"""
        def __init__(self, data, header):
            super().__init__(data, header)
            self.instrument = "HI"
            ...

        def _pre_process(self):
            # image normaliser not shown here, but used as an example
            normaliser = ImageNormalize(stretch=source_stretch(0.25),
                                        clip=False)
            return normaliser.normalise(self.data)

        def _get_colour_image(self, normalised_data):
            normalised_data.plot_settings['cmap'] = (
                f'stereocor{self.detector[-1]!s}')
            normalised_data.plot_settings['norm'] = colors.Normalize(
                0, normalised_data.max())
            return normalised_data


# Imaging from microscopes


class MRC2014Image(GenericImage):
    """MRC/CCR4 2014 format Transmission Electron Microscopy (LM)
     Image reader"""
    def __init__(self, data, header):
        super().__init__(data, header)
        self.instrument = self._determine_instrument(header)
        ...

    def _determine_instrument(self, header):
        ...

    def _convert_to_2d(self, data):
        ...

    def _pre_process(self):
        return  self._convert_to_2d(self.data)

    def _get_colour_image(self, normalised_data):
        normalised_data.plot_settings['cmap'] = plt.get_cmap('Greys_r')
        normalised_data.plot_settings['norm'] = colors.LogNorm(
            100, normalised_data.max())
        return normalised_data


class LeicaImage(GenericImage):
    """Leica Confocal Microscopy image reader"""
    def __init__(self, data, header):
        super().__init__(data, header)
        self.instrument = self._determine_instrument(header)
        ...

    def _determine_instrument(self, header):
        ...

    def _convert_to_2d(self, data):
        ...

    def _pre_process(self):
        return  self._convert_to_2d(self.data)

    def _get_colour_image(self, normalised_data):
        normalised_data.plot_settings['cmap'] = plt.get_cmap('Greys_r')
        normalised_data.plot_settings['norm'] = colors.Normalize(
            0, normalised_data.max())
        return normalised_data

Let's imagine that we've done the hard work and implemented another 10 different image sources each for astronomy images and microscopy images.

Whenever we load an image we want to use the correct image class, falling back to the GenericImage if we can't fine a match from our known entities.

A naive implementation of this would to have an if else block where we use the image metadata to determine what the right image class is.

In [17]:
class ImageFactory:
    """Base class that defines the factory interface"""
    
    def read_image(self, path):
        """Reads image from path, using the appropriate image class"""
        raise NotImplementedError(
            "Child classes must implement this method")


class AstronomyFactory(ImageFactory):
    def read_image(self, path):
        # reads in filepath and returns image data and metadata,
        data, header = Image.read(path)

        if str(header.get('detector', '')).startswith('HI'):
            return HIImage(data, header)
        elif str(header.get('instrume', '')).startswith('AIA'):
            return AIAImage(data, header)
        # ...this would continue for all 10 other image sources after
        # we've gone through all possible matches to known data types
        else:
            return GenericImage(data, header)
        
class MicroscopyFactory(ImageFactory):
    def read_image(self, path):
        # reads in filepath and returns image data and metadata,
        header = Image.get_header(path)

        if str(header.get('nversion', '')) == '20140':
            return MRC2014Image(Image.parse(path), header)
        elif path.suffix == '.lif':
            return LeicaImage(Image.parse(path), header)
        # ...this would continue for all 10 other image sources
        # after we've gone through all possible matches to known data types
        else:
            raise ValueError(
                f"File was not a recognised microscopy image: {path}")

Now users can use either factory to read in the right file types, using the same ImageFactory public interface.

astro_factory = AstronomyFactory()
micro_factory = MicroscopyFactory()

image_1 = astro_factory.read_image("testing/reading_AIA_AIA_193.jp2")
image_1.text_summary()
image_1.plot()

image_2 = micro_factory.read_image("testing/20110910_114721_s7h2A.lif")
image_2.plot()

This is the factory method pattern: a common design solution to the need to defer the construction of child-objects to a derived class. With polymorphism we can use any image object returned form the read_image function without knowing the underlying image source.

Having this in a class can allow for more complex logic to determine which child class should be returned from the factory method, including leveraging the statefullness of the class to help with the logic.

Builder Pattern

Intent: Separate the steps for constructing a complex object from its final representation.

In [18]:
yuml("[Director|Construct()]<>->[Builder| (a) BuildPart()],"+
     " [Builder]^-[ConcreteBuilder| BuildPart();GetResult() ],"+
     "[ConcreteBuilder]-.->[Product]")
Out[18]:
<style type="text/css"> /* devanagari */ @font-face { font-family: 'Dekko'; font-style: normal; font-weight: 400; src: local('Dekko'), url(data:font/woff2;base64,d09GMgABAAAAAMxMAA4AAAACLNQAAMvxAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGkAbxHQc/2AGYACCBBEICobFHIXWcwuGMgABNgIkA4xeBCAFg3AHskpbhPFxhLk5raDOdSeQZGrVcp/AFaabjvNRQXpusGMppZZHwThmARuHwYx97M3+//9PTyoyZptJ0m0DcACi6vW/I50iRy7VopUxa5ptudZpAhHNX3vu1YcVcZVv9Js12+FaCeVWwAvMkMkNHbYIcZntZnmzMJ2u5oxotJ67lTLW5nbLe6D13MNNs90zFMFmOjKShCQhSemP4T+H3meSfqaMklECr5CFIyUTkEzgJifA6PFmWoU//Hz3t89D29qR9PJMm9AS40UW/7ZiutzHizT6rxG9En8n9NeXx1Haw9pwxpSC2M4DRMoTcEjE/5BnHsgqoBybUyNZJ3nyHSTdSu6upUAXUMCBWKEgLlQERIRdFZVH5iqUgpRlW6ayK1RAXIzlQhBciFrXZjl2mcMNiDwyVgf4tfnvgOPggotq7o474uA6uSSOOiIFQSQUQRH7VMyYEbHpdK50qat0m4u8za3//p4bMoOpdUCOXD3AYcYjgnj6/V733BdiZYBVWJFwhMLR+Ex8UXaqqqKioqKivoqKKquyqvowgHMaxIoVKyJWoGJQo+q0tKUGFChQpLgHG7aNMWfOxD9Rudj+79/+83/X7f8salY1xhg36wTHcT3PcRxHgkgQERER6c15nud5OfGanOd5IhJERCSISBARTzxPvIz0ea6b9UREREREJATxciIhiAQR8TwJQYKISHA+8URERCT4v7pUWq12OwJMohC7kfT3Tp3XELB9WMAxfXt4/m35u2d3HsnQ4un6x+O7EuBKdRKJ8GAUIZ4uUQRFH9VL9txfocnlyOFz00/WG/nfC0FqRtvN6cQs8vuvO16RMKhDQ5CGkgrBEkrFgAaeVC6Fb3Kf2jQ5LMkfpNM4NAF6vk7c9++SmaCEKCCpVAqq9b/uezvLXbvftyAExKKBkIVsagYk5ZOzZZur07e0nPqndafRxKMwAqmIRyPh+b61vl5VZfTvgeOBnGUhzTiUgEKPH97tjLxuOGwTeYa4Iz2q2UOyOwgOzkHACyjar9onItZ2iIZOCaQuXrrYzld6/tARq/DD9I67gUh+mEs4sUmR1IDY9PGad4+NjbOJtlAHtxlagN8nZpDQTeh2G2gURPFD1P+9Uz9NvThXtiO7yHn8BUiW3PYBwFfj+dHs8swuS3LsANkcYCdcToH2VdBy+hCzp5J1tO5/tu5U3T4AnwjJOUpu1MA8cx7hQ+mD2ww5Y643LD0PATfGjmlIiQgwc1jCkq8N8BtpVQ1t2SI8E5SfX7O0/+VnmpnNQf6llCvmMFt1IEzJYSocyapy5iXZzJ+X3M4kR5NZzGF2C8khqbQs9wqkCBzQwgGzPFdiISvkCX2qTldV19VWV4tmAinEAp/vJKPeLFPIiI0AYn0t6drsC+WC3HB08P7/EKebdOZ1wtYIozrWv8wf1YNUCKfR/pfNcj90NaPYdY5mBcmWK3FxSJTknURYw/+vqu8KiC78rafWMSfDYvuXmvQt00Lc94BHvguA1ANFRVSzSVfK7Vh2ipwCPIIgAIIUSZXq0pVWyrLmZBj71OayZ8oyK5vyp5yMGbNMORmGKVjKxct0ik/D8Xzu9LZb/y06UEgpEEq8gTVNmzzeiEgYBGgeUrw+cAoPjClBgK7pFymAhX1KQ4DwtvQJWG0sDIFwc4AWCJWPrJywwMICkZubnBE/Yed/f/8/3WvO3e9X4aMwbBIIHx58uHAD1n/Nm92XAsmisqbxm4VhFnay45aQBP/VrIzqKTMjrCrfFYPaDLSM5Eb+cBDtuVWR9g2NkAEZedEsWkFTsCC1O2+0AXLyXZJa8IQ63zWgZ/+Cpv5xcE4uqUDbEpLuk1OEaWD74gLANhaZcF4su6VyKKfy35sVRE1SBCPMxxgjhEhxTXV+G5//vjOW2OXlb+FyeRVrBxEZxPqnIhdJQ5CSLmvgn8PZqPEiRmVAxyE1eb+QmZnLU7wrB1gBPLYzffXf/gynfdvB5t/8xNMEbxBLeEj379hP6zc5THb7173Wt0RBtGMHpMygvmoAAoAIQCAIG3IElBWUnJhqCUwUqw/O1xc0GRBxXDiQ56d47obISTAMt7pr6wzoR8UxepSsnQUsvrwgLrD/sQQRwB/29wvqfQEAbgH/lhCe/C0RMoi3RBGQfloYWWSU/b2YcOBNgU9Y7LVi42foeoGwuA4A8UxoUYIVz02kP4xBv9H/D4sEcHjKW+DwBOCS4ycLYQz/kuJab1L0q7qOHGcMdY4lXl8AvPEhRC05WVJyR0meVgzAOY+UeuK5e16q25wGb9x55wui2cCGf/VDu1+hQHdoSASTIUOz/Ie+g8M5sWUJCKRqgZIQaDUCo1FgNSseFzTQ8Kf3D6jvfXDrzr0Hj2qePPvoux/+EdX+/2xvP/oCm8UVVPhX3V/BwuDAoSDiFItUjOKVpJRVVrqyFLP4JS3VrP9qDXcy93R3TGXpO/Zq+kae3KREyuFFjlrD0tAq4eTq0moApWKlqqzjjNgC7vOPldhPomJg9iueXd9GpGZ4s/odv6c+oDdP/VD7x8Pun29v/3/E13uU53r0N3nMnvp46hOqT6o9GHRgZmfqh9qHzKszOvAQ9Lmc2Eu+zMu/q3f9bt7e2HhtCg7fp/Dqzd/K2IzTLvvzNF9mCgLIg0bxFdOQhjqMYYGG/eEMf0QjvsAhF7nYJS9z+bsa2SjmeDTKjf6u72aMYxnbOF52xj2+Wcw6aBf8ZnNCcwEATPy9xstQE5/UZKdQUpxy4tH3uZ27aRqZznTrwfI15VAOJTB8mXnAxbDMPxg9gQsBIEhOCDmUUEGLE5hwCjuc8MCPIMKIIoE0crhECRVUUUcL93jEACOMMcMSz4tiCn+7x20pS4/b86D5zvllL2+Fe2j2SvdoYbPTX/Xq1rDmvV7rnq1rvRtYZCMb2+RmNr9XH+bWzUaxsQ/bvv7N9na4n3ay813thmgRSSSRSgZZ5JBPEcWU+YyKaMrlMTXU00gLbXTQTR/PGeIF40wxywKLLPOWd2yywy77fOIXTrngWkAYNS0ii6Z9HYgrgSBJJJdSKml1IpNOZZdTHvkVVFhRJZRWTpcqqaKq6mrpXo8aaBSNxpppqWejjCxYM8V0M802z0IfWuojw1ZbZ4PNtvrMLnsdMOKIY04647yvfO0b19xw2w/ueRixP3nieVjheOVND2fxFFKoYYQbFX5EEUcWRS5yHE30MY7PcmKJLY6448t5Qjlip5NNIcWUc5u7NNNJ94RZZJ1+nvIlUzdbcfGroJh9xwgll9b9HpRbQaFKelJ5lVUdXC1ng6ae1l5nPfU32HCjTTTdXC9baqXV1tvqfR876Kjjzrrs86EixRDbUY5+zGMf74R3eNI7OvjUpzvDmc96Z/dwvXOd90jhMSoc+9/38EV7epjvU9AvAXN0jGkIV3wFWMWVZBKxn+GYnRZlsmQVUtzlnL6u4Eu0jdFpJTezJu4KxPA1omd3AcSStu5XesQBlEQem3KviS4P/Vd+9BOEYpwvxjg6YVx9NbRTpU5I/dUDz4luAtw3b/vMLY9UGb+mm1Apu7aKhN/YGGvjaHXWl35X5jZFTdImjq6kcwjv9GOSPRuPfRRHwVlWsJpTzndQ1UiMvTWOdUYW5cXKce7a8vEmVC1Db7X2V11RSXn7sOs6+xVxr7tvFJ7RFKVKJTyny77GoYoTh2Pn/bp2HSwXPhv/2bfc8Ks9U9XLj1KpKi/L4khlFcq9Gj+vv7zKH8VpDO9u9tvxf0Q4ygtaz3T6pPBV2BtjDHaGEg4PxzfCJe6z9xKV1NhFPrXWoNAzFqCk/FGRDS2n5AYtj30SbuYMOe1mYUx4FYHcDYaNcKwu6dSn5CxAH4s8TKkntW/D9+U3B10jWUiVW1cpvl9elfNzKW1njVdVKMrBAvhlLwfaW7qlNvY4FqO5MHvyrmfG8f3YBL+Pvd0uy2lTV5INSdS7GQrET7YnXcZ22BoxU08TjDxbk83ZxamolaxQ0wf8iT8cYyarW7Mt9VSR3pUdM4API/J2vFaKz5oxbFiWxMqNucAy/s8Tmk0mjFrdbkO93dlRMrbpxMV1Zr+EFbW6HUYNyGc/Eq5XpUv8jOhuuyRbpVmZxjNnnBZm+n1jDaItW0DVX90x/i6KQpsNTbbM2mZUQsHJ/T1/5tPbpzEmWY80fE7ZyYZxKoed+bgJmaqcBsrRR+Ba+nts/FH9zpCX515daB4lDswk/gXOvi9W5Uhbwef4Ikf/IeQFpJrjtmuqjbzuU5HciHaQgWXksE8rMgs9YsfkRpQEtRmMlvRf80jQ2F0LoWZTXLBzKk+v89C+n7rW5YHYIW2v92cxrWt8bVJrEyqVTXAw/R7KXX/KtwcSIXSmob7hBPGSqtUs5z5axp3rsIfhMsWkwoOEE1Xdrq10EfXLrZjt1KrmG2c+1/Nu4sekkx9m1RKXbC6YH36q3NW+quV6DPI8CkLsdt5pli0UN37KQXi9vo/NHvqphlyrbAhR6ajYI3TABXrXsXcqT9QNZ0UY+TmLzM22sK4ny7K99Imp7VxIJdugMyiEVmF5xSftv1t772WXsy/2YEk2A5zzldTA+uDz2puQLW/FD6beQ35zKutAk7OnRMmtlddhk91Mph6VvVBtfGv4jhtG4nAwWbYdK9FaClxGjSvkGj0O23Lkk5ldlnO136uu3WEI43yDwTxfINE4XXapR+Mcv9Sd+BUcwURutLFJg4O8lgRo17DdLlhJeJ73uL+WlomQadntbOJWsJ5fR41/4zKR6nyOVRPrx+JY8K+BO+O/3JPQVMV2Ol2vhrW+y6FqFG759y4zvoFs8uLJQcuZ+N+RQEjitYYCADMAYAJgDwDsAeAKAG8ABAAgBAARABAAIAEAKQDIAEAOAE6CrYsxFdgckDbbN0TBzdsY6+W0Qnnkbhh4xP9J5BgiwbjhefwVoYjlTaBQ80P+bfFN7al1TXUNuS4bD6Pha2nv2t9DSBYkcolUaUqqS8V3cAQamiK6m0IUc8YS+9QIUOu5AwscSHe/OLy64af4eajMm+Xm0qYpM2FaNrNUlTl/pBzgdsxel+MARSrHABJAvnV4gju4h4fwoyAMpcl6sCaQVRyeWz8KbDZqtdvi/5Wk578BYCd+/TxAhj/bcPB6AnOYxyrWQGsw1K91nzH8aQ6OGNZ5WMNp/ohKD9X8znDSrhTbi0QFHqJVB9WRF6vky+j+MwU2BTYFNgVrGEZfT7FuWNCdKdd3jWu9NISptuzTiEemu+8v5vfwejXUbBqFnnVHu0OLnBScjlQbH2mFQxpvV5F8rVXO1cbUwO9Kt8Iqs0e04LmaulanVU8KLFXnE5rmYuJa7qTgxKjy3ArPBaT7Bf00Xzx1XmCsJwBgZFJgqdoPR5QCokoCuc4psJRNeT4F7HDCM/xa/aTAUk4HzmFcahWUApsCmwKbApsCmwI7BVhsAljGiW7PBWQZU6yWQ1TDq16G8rDL+casNVEKbApsCiyjk8k6k+I8cIXrcaMl0nPB4p1712V40jqJGnMtlVJgE8DSLlRO66UU2BRYWsmoEKWAUmBTYFNgU2BTYFNgGS4KuQzc4q6b7Ljr3Aee+kuanuKyGPpngQgXaD2VAkvh4MLdtKpKgU2BTYFlLH3W2ioFlmZ/0EGFHXVOoO71qHXWPqxaaaXA7hEttp4LUmBTYBPA7sdsKjBFq64U2BTYFNgUWIZ1KTYAZlj7zC57nQMAgghiSCJzyRfTmiwFlnKDc3vDA3oY9idPPAdWY/MTtL+BXeDvSAeqGQCr+RFZnGEZQYFjaKCHERbY4Gh3fPWUL1rGyZMw4XQi0vlHDFO3lH425BkR8hF+bWPmD0oGA+RjTnf0aU/nfNa0horzHl1F6rIUrrM8WasmSZxza3vi1FK/4eC3kiJN0xYPdnzXTr51SVqAQyrtgbBM5xSXXwyKr9akAGP8S4jgFnOkubMDk76Skl0N/4Miss+553AhNiLlb2v5sDLICeV56ejz0MSk+7dF7pMnvbhS151WstZDfSAy7iXM5eAGOFsFGm7AxAMje8ZZ3BppqhW+zF1QGnuQp7Nbu8M0khR2bOBU0gP4mUKgS9qr6FbXavdlr8Y1I6RGzwzt1ntud/M9S00KnVVcVLw75LqvJ8m+6o1nzHPKpFKiXpWIdleAy9y3JSEDbKJQYdBx/fY50MHaxN0fHIVEhXz0AwrPfMl4NTkveW2qbi24nHMvL/uhjM6yozvtiag+HHwOk/ROVUM3e+lanAMBER3Bq/b8LPyX+MUFjHTsdY+7aZqx5aU9HCYifdtPaYdnR3s8u7rKpjTsl453gUm6aERMmk4mqHZIop7fY31BqWSlm7eJSdOmj66RDlSygep6kF/G3aWyfjBtfYDr2/YJ0E829tm63uet5H5ihKTaZrfQiGsbeqzYxkceWTL7mIy8L4n7ioLz0XNRdYV6p6p93rZX9J5y8nyhQdZsXLxIXPymy+35h5i8HtOes9mvmzK2tJCX53P3oLO/BrTDSJu00aNb6D4qig0OjV8fr8bp0Hz0Ds5qRaP9uyfH6LKMKYcPcWOYOmQO+bQm2jUvYg+5TbPtC0kiF7yYqhLcdMS01mGQ6OL6xvUuE5NP+B8GcAdFLZjg4jvEnQcWc4U5KIsfChsB6a+BTtWkdWcq0LSmziSKOsrcffBZUKWjG7oXprX14JLritbpNs7QGjrdSXkTL+eKN1C0U3kr+uhGTZWODgWp8JoGgJ6tXO3iz4wsHIvw2r0OKIOxEHSQ2aryyrqWQnf0uMV9Hml/1OKCIT659E70UO6zXxPUe3rZfDVR2usnzdSe0E3r8vPCYW46z875Ww8wIrfZpmWlY6IzJUAuCdhw5a51ufmjuEZX+3KYoLO0MwFJuUTrfOcqaZJmzYF8YgZ/3ozbT761KzIiHx/0bSqs5qvHcGItjN00OdbCckHSwr10TtjizV3/nEZVroGrZXqezrn3GsWszD/dXtxVSrdUy4GVI1Y0oWtay22dcvbgWFMrz1pcPax/95jpCde7bVBkpMkoixKHQn3UZqHys9yZKLlQ6NwlL2WTW/vNjDrqv7FejXrbbWWtfp38Lk3/fpHV3XDb9Kh+40ORBNTWimuLHrMqxQakdmuYFFNhGWi8VOPH3fISCzll7zaFcUMHNutxwhwTV6QV24bCzAdySrNOro4CC2z/u5ZJ8HfAiekPoUPE44IZwQ8uAwjIrMjJtTfYwSYwBBOwythw4Hy5Z+D/z7rxi+e7/1eBlMB/0g/wl54XNrC7/u9/ooofN7l53Ui4jIfycl9NrA2yk8PNDUc63hkrlVh8Byo0LBIadlsgHHmKcIjI6Nj4mZxD5cJAEryojIKRkMD+9gJKBokKKiYuYfFKsvtoFDr7hhg+GN9uhxsSAWZ/9gdhsRwIBL5hAuj8MsN+eBT0CDwIhHxhhj1ydB0wZcaj6sAwmH1i49aPgUH8zxv1QxJnc9UdM11weRxYq0aFXMOwcMYfowm+Bhptg2P5d/DCyYVvkS//FHBx3FsYYU7n4sDDOJj7mlM0Mz+J+WouOJBgLMnFne1niYHwxMA8J20H2gnkoABYw/KxRxV9N9mwcelxLicS/VB8S749P8Ffz2/9T/Xn24gQHypeVvuMVRBPFlpF1i6eWdxqJ8suLHF7NaYtyhAqhiyD5lI2VI2xM5P25nw/yQZv+u10c23nW3TL5GkcfvpnQM+j63vN+usX+gcBA4iCLKiAJ9AGPxPuBfOFWLV6piHNaU37ujQ86gAlNb05LWIFq9vQ1iBucbbkMMCNKK7QxAgbJ6N5aIWb3OtxL3nbvxC1Td0WbMO00M8ky4ICFvaACC6AoOvsfM7/A8uVa125casbd+51hy+AAoRFhEoYlwmpUFplrMZ5XYiGlE2lWobRYZqdltVl292O06N123V7Pa/P9/sRBoACECyEoCIYLkaQEhQtxbAyHC8niAqSrKSoKpquZpgalq3luDqerxeEBlFslKQmWW5WlBZVbdW0Nl1vN4wO0+y0rC7b7nYc56b6qii21DTYxAJPwDvO3gIgLId0ORcMtGUIItQXO4PeHcUTU2EuMxwC2RIcsngfKfPNl+hL8R1oceWNeyRSIqumgdAmU6KCgc2e63RhP4FByCdJ7oMlxKAW+Fy4YQmoUo10VZdTPF5RDhlsv5fuiCEPNIdtUctkF1g0C2Wwd5QYJesxouDCJ3MikPkaE3dAWzVvnB/0++edq0i5q+545jWJHj+Mq+AhFQVPsQoWXHI65ep1GBKRkHWl4q4orjG3Hng7oDxEJGQUVPlo6BiYWNg4uHj4BIRExCSkZOQUCiipFFLT0Cqio++oR4CCBv62URAVT6WAAKgtYuzDGV8HnUdDSyUs/hGg46+KSc5WhUkOADJyyQwQRRUYfZ/X+I21Knvyq1HVGuICUAEr0DV+X4xPAIuDPU9sEeKkyVHgnMvEnmjyWZdvxkQwSIZLcMiUMWGT0jKr1dbQlnWy3uQ77Ywql911z3sf9Bn1x2wWJjIIZJEoUkWPxihxR6fhTE5QCnRbLwu6eGCCpNW7PdvoJWT0nVo4eZaoaJeM3lOjuFQ78+hWyVfitDOqXHbHXfe890GnPsNG/TEpdFAoAwlQFpKgAgwiFo5iJf1/13YErOKaKqcmzxm1HoRXyaZJj5EuEZ3BMrQNcyNtHB8v4gEDJzReK26hNtOSrXNmZX4h7KKfJ7vkdw/6eTSbGYl99dACFXzujQIeR4StHK7z181z0Yx64uK5tDjlX0+OCsZE78xeLjS2YTu2O5GyH+EiR3g6KthOCJ6TItopN9bxMq15kKj+/otVKSJh4NkC4aqwIVkUIkKxiFRKMa9wdtN9g0emgoZDpNh+aEwz4lxRKs+HC8JNhXBXSRGZVF2+KG8J1qdKZQN49Zr9KjTM+Lq2ByPViGi1cufuXIE05PUQvm64fm62BrdcDnHFcDsT+fAB3W8fHpB3ta00FCzt6MlMeCT8PQ4GeMKf0rMKa671dDuBXsT4y7YyqI27Gs82SPVy0BBkaeRN9Irka3yR9FKMv6V3qKWo4ZjYXFvuzhdbqCgxDknzCRqzdGruMLXsIlq7tN+hW/pU0AM+0As+9LET9EUjaA0GaeMdssudOJ8JlJCMiG1fUuOVOstBtZpblYGe8iH6qjl8c4N9F4QfIswvN9xvcRgJRPtppu1VK6LgkFAqo2PxtwER539p16FpuH4mhOifBE3VB2PU+cBIZrizNKc1zBNvrED6KLyhHB7QEGUD+p/L/mYHHEVMTiIu53SilBaK4OXlGc6Gmsik5TqdDXaQcvnnU0AawCh6EBYc5U5CTm52JbKQvVd0oSEj3kqbzIyAvpvk2rXCPP65rGpu4RHVwncDSyhnJo5QVUm5kkvzlEUkg9Rll5bG0yHTjQ7esCdrNtAqCZ6zD4frzIwTbyGmDEzIqPLRMTCxsHHxCYmISRRQKaSmoVV041bPI3u7OmcZkz2c+U5ELVtI9AZDnwFDWxnZxniZvMnGjJEJBZWElIwqsJZXYIO/cX6Aoei/GIDnw0AssLtF3xJsKWCAEwhSuEYHM8eg6WgBWuEGd3rIM17xrk8Itqdt9raEGlrpZ5yXvGOPs0BjyBgORhrasEUwUnEdrRjGMnE7zB1xqvM0A5nKUjZykPPKBSydwIMcethxjgSKaKCP5eL4bsWrXssGNr5XW9/eTomSgzzKaaSTERZYZ59L4fROYqllUVAZldXSUGvv2ZUFhm2004hTLrnhvmdB+xF2xFHFHHfCyaScVj4VlFJO5dXVVn9jLbTah04PFccd3OEdn+lcF7r0XV/zBjcP1uCKp+P5eDnpyEZ+ilGBqvRAX+iZ+dX+K+GrYzaxi0Oc5mvu8Ig3YhKYBBFBKQZxSFAyUpaWDGWh7q+pr7mvparRU/Xqheb0Rjs60lVSRDqRT5QnXXKkYEqmYqqnXpoeGiiEi4NOzQuVkgPAiFWcSJ58sdPnFzNtnjxkKkrx9qhb+1K19BA4clU30rd/w6791+/cf4ddDAvs3pm+eq+pK3cMbLRVjixTFCZFbCqzms8SdmV39mgTB8vbG84bievc5n6PedFbPvR1IJVBFVCPQh/2QCIVpWhEP5ZZf0t7y3sry9pszb4czfl8lx/zpGBodJqIpirm4i7hkim35b58KuuK7xjvBO/gaqyeGqmFWq29Om1YOoMO0dXN0jwt1gqt3oZt3fE9473gPdwt3d+TvdhbfdjXTzaDw5A/GZ7cT1FAAQCg92NA2R3+i0wgAIDCAGJTWC8kY4YzUHu/GA0fFHlILsrZ2zq8bJLwzmijm5vnfedPa7dBt4SUn1Q563NcKvuRz2r5j0d4iQhN8M0ma46TaXeBezyK+X/7akDvD7Darypl4p17YqH6/18zAXq3rhrv1CaNAZ5GVfFzzV/X3J4SxYgRl+f7okSb02uuCFFmhJ2PYenwPjdJC86QA0Cqrrw8bjP1vNluhvj78e0l/0ILyOCPGkwWDrbLuVKMGw7ayxB8o4SD9FLYTOiEOBQBZTF/mTL5jTmseGTUm+NIWS18nNzQW3a7AMhjl+OTYi2u3Z04kU9ceFoxsdNwME7a6LbVgAxKh3ApsXUaYbTPASh1HjVPDCIbV6gSPqAo46M4nT1PQu4d44/65y6I7+CtX7nD6qbL+WP19itrfHHMP3iE2cMeX79wAcLmg9oDffZs2qfio+XmJAOA+WBbdVceRQDRA1AY+Yk1+qqsfdrDgC0ZnnO3TeT2aWbcvNxd5eN77ywJbJivyWBR9XhhOQvZpRe9pyEi9elu3vcAKpr73HVpZW7Vkt0TVMzBS+xWhzCZQP5u1WYBRFBbVBgx4OksW2u3fQM/zlyK+fkXENf2TDgbD3uXK+7nCefg9nMMM6/Kw/4VWe26MLaujnXT9gDCKRxAFjufkIWT/2D7MKBychiflVQTrcqR//u49yMu7SDhiIZeTUJyW2TWZl81Di2h+s930urYIIEBd9Oq3fVxjnQrNMfBY/wkQdGEG2RbQdsLyFhE7QmndRJPoKmDGO1LAR0ds3vBQZzW+ESH7LEidkk2L5eDP9YNLBMWkA5zY0NwVp92Jx1YJRdPbdCMkS68/OEVpfGE9SDifl/4/uNbL6BT+Zrfx/aUkaV7OO0/Aebzh8OfVSByexH4s+jm8NCYMNa/Y8DWdEgUkkqmi+gNqMwaC+imOHzcvyqbxH6T/4uNN8sWyVcs6Qu4C64NoQYVeUhxNVYchgzTBXG4z4Lxh1FRhyHkJrR8FI/7T/sEHQ9zWbGrnuXlAcPtOBXgSd2zhLaax3MqqhpDZFU8XhBR9t4Kj5KJHSyKJqwG9WWY9Tkk2m81ONrIKShaqiYwkmq7U8wV6QwG6iwlmmpsTq4VLlnSJ6BMSFlN3V3DYyNTpIT6CXvcjF+NsmWth3Jli39Yep2ceDz0306+kVQsTz7eIw6HdNVZWdTUWB+5VDjRiStUmwSUVZXdXuFxP36veTRD06sJSl3aqzkqndvemBKdmvlQ69g4gUZbFJ4p1YYVHmVaq/JEuVauCKnQMkUSWi1c6lOZuf8CjRmlw1uFo+rpoqLTxPvIHz34xTOmWuErXKY0hBCE/LI1rRtFv7xfx3g6JUBX+z6gpo38yKWWMoe4pgKOgCLxHrs6cxq9GiOfI4WjCMEJKMBQVhqve6jZaQYXf18WvcpzXBuGapQTWgonWi/Tto2eKTzbL0t4mTQhxaFt3MXwnwrQEl+ABrmmuNH5am4DBro6k6DjMEPKvHpqFjBSyCt0lBVj/aadY2b+mh3Sf2OrEyQ+hEzLHYRLM00Pk4ZrOsfqrpkcqrlmc6Aq3kJScU8AJexvd6dpqmSslZ6iceahfhlmdEZR+4FHUhuKJ6gl6+LQlLswKOJelOoMHkRq1CVMhf0BgkCGmsbNCZau424ugyq/Jzra4CA3+5LfEzlN6YILRSyGV51+xakasYBGYeUgVUj5cE+wZKU2srTRLZ17L5k6OiYJ14kxidvbpAOaC68bSQdUFYE0GZIqLhCCjb1FCzMOJePsGBoaawnLGfuZptBFV7JtAysTTzULCFJS0nfddMmobq06NkraQFedXKCmRrWtl6icdHvR+B8IPTBypnRHUXvVvjlSw6LZQ6JL7NLsOc64x/H480rSsX6Td2dRVOUrdxWZ1j2X7pCeNqS71lGl754ixSo89xZJVsS7r0rQQu4v4qiSzQAwKEy0roTte7CIqArKQ0WYVcIWzj+yA+4dfipS1/jKK2v3OolqRnqbUjotz2BEuGlRhiNKrvkYjRgXarU13qYVWo9f3fJPBtOFuDRcE8eNva2NBIdKRt32gyNjbk8WJtU94zWVURsyvtEUN7M/a4melnBwRkvhyOtGashu9fqR9s79DGfsjSTEGQ3eTZ4a6V+gDWc0FpG8YaRGpExv7HPCLPSPJEC7qx1MY61Ob/w+zCWOdflL4nFfWQqJ3G2zsukBeUWWGNG9c3sK8alx02BVeNOjPQGtyJSFeyuv9iUm4nf/RG50RC/XqsuePY4PeGGZbCK66rU8teZBEzYcCBY1t8sGY2UwS97cLHxIaIx6OQMITlITLTD4g+0Lk8EejH4aqCyCBsbB+20LzkBtHhy3NX3rn+9hPSgZEvKjnTzJsR9JJlVjoR77rf8B1TXp3Np/0aQeVvpP1rIlw4kk1Wl3rKGo7W9aRDqw2LemdjOSMFFxUnT03HZB05x9AZC4aqe+YWVvCG1qPzPUqUnZQa3qlH29rBHLt8h0pCHt74hHUuJDhOk5bTxvV6EWmRzCYstjg4X23D0CIM7N3HvqHb9gjLZrQ49S9Q6vL5uv+rijP5aA8q2kSIQMosseDPIgQC9OBH89ucLYalIxGGnofAtDXfOHurWqxv2/90x2bXaz9AwsK1/6sDTtP6dLRLx9IhtelGhFEzK2xxGuhL0vBvd5QMRgtrUxwYYx1w2/Va6lZZnnXlP3WAuNklEhXeqa+nGThnbAA0t3TXXeeaW7pKbFeOltSMl7xvgZBjhxxgQRjm0TOpPRIUYtKn7EwGjeKiL2MVUpi/PQZdekxTu3dHXdSPQEpC3Li6xIt4PhQvWvLE9wHZK3jUmMCBLU22U4c5sIwnarSxF9de1zdtD/o+tudOyQxy87Fy0xecTQXDfi+usSprGk9ITVGsWSr2/o3kTC/38idTYlETQYd6cTwyH6g28ozzyPRVd8JSVl10wQ5UAQKA+J0ExCUYLPFlJPFV2CH38cXPEOSSEk8tAjTzzz3FfD5i0XLh4+ATGJqseAxvGJzcpRHZOCkPZ12CzGA0uoMBGixUqQJEOmMqedc165CypUqtOgUZM3Pug34LsRM9oEgQRIhUZEQkFFw6BRSUfPjFXSlwTpG7JcEluI/cJF4hNIzfb8iCxHnXDGF+2++eGPCSEjCw1U0Mr49EC4JyReAgUJxlPtvT6//DbaDjRM9SFweI+pavkIECNOslPyVLkUARYOS7k7nFHtbzMgY0tkeUuU5rDLXumMRJjiq4BMF8f3wdb6yejEfEISSazZ1UH57hgnUVZC/eLzhiP1MCs5HxOy5saM4eAgOeLThmy5Pb6NOXIdc9xJBQoVKVai1EVXXHVNjVo33HSL2G33PfDUS6+989EnnzVr0apNhy7devT6y3gADMQgHlLgUnRsUjJyxRSUVGIRwaCWheDUrwfQVhRSNfSt2mXvsZ9Q2m2lBg7NGSZXT17GgyPBW8AV+/iXHhEwfFm2vTsV/VkpJ4DuioLg5zIMJmjWiooqEq5z5TXKhsr17xVn7oRoNUrgSUrqlskqf6niSbGVaf7XWh83P5LAJ1I2JlgZIzkf2emFpKpr9jMBPBFAd2VQK0aWc+7Vsll9zQyqxODN8VRBBOz0HmXV5Kg8o1SoJ3dERGxgnxfnMz8GR7LQGNx4R4zHM6FjpXSMNuUCGLqH9ZTQReewdTHLLnEmahTQZ5rID2qaFokg6Nh5E+EEHTTKh3bDGDgKa+VWWxoAHEtAopXDtepMQuYgOILZjcJAHx3XkTYakoyUKLSSRiXHJc8zAppAIL6XnEIBJUayQEfv/6A/rouQrwIU6bHWHt8yw+KtsOAVGiaEpinBsLJSq0XjCsRVRDM1k4mjr81EjaezHlOw0zuR8qkkmegXJpgkk5pkFdnhjk7DJoNCBaQ8zhSTx7hy444SndyHr0Ds8bGjEKG4wkWI9F7KikWPjiuPDSmal1CZnIKeuAayAe9UAlk1WW3PWfEq+iQQLaQUHYMWHUI52pNKtC3VaDOk6E3I0Roo0TS0DB4nVqnuWqyJXttVY+9bkPl7MhGt4mRjtz32svUfO/vYcygA6ptOp6NnYGRiyYo1ph12QrKI8Rdd2yogjuekoUhufJ+AiyEwLisJ74UhRjhLSNC2Rg37h4dwk+3ldPF9BFITvRIzwcfJMDoFWK7TY01nuuy0bgn/+asGEJM1zRrQi87qfiOEgYE8iQxAJc0IUpxhwgCWQR04uW5a13Zdj3Zjr+m1vbG39c611fiaFJGNrHKv7IYe7yX5gLre3DuGTy1CWMNUc/KUVprsFKH/P6mYA96XGYsIF6uAV/r8Kxg8GQQf9wflEZH92ItYOHiblZhMNmZ5VtTeLBlSz6Zhj4o4hhaiRTCm7lKWRZcyc036QcSPQv6ZBAcdkug/1wS5FJ9GQkms1XGtJfWL8W1s2uTGhtKXzr+Lr/8uDX/pKt2JtKRA7pOKEAnKey3zyWYiqTR4DIRBarySbhm4tLKTBfc85segBdxxC8kPo8ZSBtGP/WHrq26oghZBtABib9uxcRm4jxZeGlHWwolCBSoWAyv3+imowhRqVORN8UhBKb0dYllRFYtgiXBmIZNm1cNHCxdhKrH2WAGPYtC+t2gY1UPFUT8K9YcNcTqOBDy5vPLeMxVNIVTKgqIkZB0gK56hzTTTROQzsEwCK8jaqv7MbqG/y1tiCGm3TJ43A069HOz0r+8t8W1lZcgP9/6O75cOXpcv5cK1pn+oH979P+K2FpVUU6PS0jNVfb2qHxtWwSHtWRd3tnS0OqolzszbmjQh/RcmtV40qlrODyeuh+SkLt++gjSYmA3uTY/jrv5Mqh7zqIU1rqR4s9ZI1tCMeXa6k0rdpZgJGekY566EkorTPI2RUeznFYO5M5OnDgJ4ztfhSR/iRlY9Hlys/YxSdOWFEzdFhBM9tTJ4DAij7NHVMQ7ssqjjF5qdjlFkbIM9BMVJ8ajm/PinwdahGYM0Y6odM+3U9O1LWxxPARjUd2a9Xnt9dD7DqvzozB4fwTHNOdN0Gbl4/Hy0kwsiYZ+GwiYxj8hIVBjGO2n7L3bgHjXFnYTMAnQAtYRBPZV1hRNPq2IWKfCvyTFiwVmAI+ExQe8dbnUaaE5SYSdRC7Gz4Ulg8+iFecBOwEqkctUBylMFnUp3tSjd1Qr5yX3QpmiAe2iK70uCnjDssqIO276H3EW8LgmqTk3iYig0q8xFo8+4T2satjsaqjT0L9Y1ejpqXmpJbl6NWG+XOx3URdN34fYQ2DUwSjdwHWENTiHg3BXeXa90D9XH3aWn0V1P13SfPi1cNzo03WeKaVBSjR9R++1b+3C2Ejmf9mAdu+OYFM3MZg9ONOzNJVHS5NlUZzjxTVhNfvUkVW1ouIIH9pddKOBSJpGOJV0cItIKUkGQ10S6H4mIaNujxkCRyH4lLEyJCdEiTmSIFBK+kGeRiYXUUYbezCFcVJeHxW0QTZHpxNJfXexAjLVhRYRxdGH7kj/7e3umJCpP7yTPFE8VWaoCAlSM8JWJwhIC+kkGJKeWJxSebmKnbNbEKpie2J3eZ1vkS6zjZbTZVJ23DP3+zIiN6kHn27s4/dtPcJ3wBIhnTKYLqs+d6BL7WRvaxjQCAdsn72rcOd/N9aNYGmFaIhxy+fNQPBBr1bc+soLxUDvgDZIq+SeTPhV2QGGTWzCoe7jonwYmhsRSO5WxYtyi+FWbUzKHzCemj5oIUMo11TCNIcd1jE0wii0Gb8nysUXw6gmKTY0xRR24s7ilPTPvAueDrmoSA4MjuSmvXmDHAaAUi8kfV0zJQJHrJInZUiKzZFkFMZ2DtSig5/tRbjX7bPmdN1Xd/g4s6TKDgAnWFMTq6bLa5QQiYJb7Qe1y+cufSL2Ofy1CbD+IqIZ6OCsTROVLK6dBQayfBqxFiFjG5YRnkfKHDUiN0cCzO1aUWp7FKYZlYjXQfWbYtPb905ipis0Oxf71KgbVIJ8VTRL8nDnwkV6zXPO85FbYqjhUhkjAnU/FACpuWbaGJpPBGHGhNUoQ5SiTJaTjuRrkb+GilJMDYcT4ZC8Wk5aOg2G5xhq9HVROSKiTcBQxId9P0jpsUGG2TP3Zb5YvGyvZXUPXOmxuBEi4FenOZl6VjJnYuge7lHvS0EY+SEH8rPsBdXhla7KD8IA/d2Wp0gCyYTcnlVXPkpraUY+M2TxwJFrlmhicSmQni0iS8C6gaGrD6ENql0sBSA+XooIPAoD8xViWgvKP95OFokogj1YkNlRm472YLVHCwi+juk06R9DJmn2QmVawaLJpNW/l81sOVauQpKa6j6MwLYVavZLvBiBhaBbpUue0HCccq7rqqUFEZHEALGXo4LrNJwF5iKT33zq3JH1x/JDo2hPh7e/fse/YkvSvXhwkAi9z4UwRuSu7jFyTe7rJJpFYAF2twsD531RQ5tLctEDisjBccOWA2dkctch/kzxGQ9acI1MzwdOkrHxZTtsivsktLWLZWs2F8xPx0+UC9bkj3LtdyIS4v1BSxvspTCXOQy3Sh3Ial9kp9F9BZMEy4n/JzgDMS50FAbv5P+PNAMxrFrl+NWMSyRAG68hanEOebBh4XZuP68sy+ZZjk8VIEtDzAEbkMJhv0vjFVYEYZzeH+DnV7BZgm77IXwoUALskirZtP9RhjAz79vlgmY7KH+Tyhn5KHVx3aklb4vSJPFnDv5Nyiz484sFL9SNwHpE8XsW5ukF/gTPfxdYWLUgK42Wcs1SSm/ThYuqnPVAD6jA2YEoyUpfXDxC9OZBDcX9j5/plAqcPrmXd7Ey9n9A74QZi/Ple/hjAIOd1BD31xfKeNeLMRw61HBmWsxxP4bGGOgALOmGJV+vcwhb/+TZ5Qxb1cLIlJg2sDpl37GIn1D/L5bF2dkEH8TqmkTEkuWK7q6cDIDQ934Nb6mL4eiInSpN1+MwuVMERaA8TPmOsx9vJBf174x/PI9d8tP97FD48bf3f3P4F/6H+3zy89/qz3eLEFlSi9+Sh/DrKrD4EjeIWY4qzXT5o80S/hsZL1Far2znNFhdaHT1y71d+4wgRAQyDI+uDwdrSO1DVBZvXK2qzSX6UYg85wJYKQ7iRBObogAjWKx50a2vULltUlQs2b/6pTxJ4l+nAG+wUEXTYAdQag++dLb+Ivtpq44jzuTrrSopLS+ek1jYIx/JTi3c2z+p57dP21UDqLYKkh3MWWrSzJggqdH0rNiyEWBLGByiORhXj83Rk/6Y+DI/O2w2msojeMJL+Q4EI8rghhUooapFSEaPODExVsWPztC3AvnJGEewWEQXpOSwJdou4YB2ASYdQTT2YysTlwbEPSpXFeBGtdNe1L46w9wMIGhoXTvb6pdgZ31nTwqe4bJWnIeTBgdIXByKNwS3OlMfpNgiI6MsCKDe4eF1mMAPROuFG9aHpFH1bc+Akncd5DFnCbz9sSkSegty88Db4pajmyMvmUaTjpbxsHEdXBG8cfm/u63wUiAj3WVpYG5B+dPxJzABiKivY4Rhg9mMYU3vd5YXy8E8ZPC0RhCGKaSY29vB+kgY0nhSzZ4dZJkeTIOAML0yj2GMNayZleNIXyMhdOv4dngQ6siFMbur2EHiYH8dT0yxLDoqC5QQiwq/q4WW+Mw9UeHZwjTQ3sHUVE52Li6LnyrrA5q0z8qHwxkVUZ5sngU3GqUOK+xmAuBqECvUIjKzYiHNqL51KAbWO/F+EZCvHdVNrocg0JtXuzCFRqrGPco8EvU7APbcWMBFKZL7pG2U3tGEuahbyAF+oQKd+svuPOBoBvV1tiAlIAcq46i8wBNoeznPCbKGEVFhN7AM7BgGZg1C+aIqTsheaYZLYTokpNscPkFC2uZPqAzqrRboE/jINOxIQVPrbqcRHoCH22i3hyi8feZ36AuFE+qFc5hu+rjAd0WEls4YNABu+DD0ixobx7JR0thTcPOZQd7VvqzUVT0aQT+8kkbrzquJHa2PKKaIloKnf8xgF6ZhOw5+gbtGczqhC2LvnqKO7REY5W2OI4X14sYgU+J9RBcVW+BM+3tPv96ZME8kCVZAbSOc6DbN0RotouM7s5DKCgE5h02DcggSZZqvYUN1kNf9x/eGrIPl6GFK3IeVAixKtiipjzskMNMqTMrOAm9jJBEhHhQl8pcnCFMQ5Xm1wcc8Iif+9dMbB118J5DquwUmx+AGyPpyxPRJDisFX3Vkl3ONSzmeKhQjSkM3iJkR3UIpE5SRSpWEc7untjxz5fCFj2dIaWHwlPLa7elR6M0t6ZFJW0uSWvRun1HWchytyC2ZMdOMdmhGOIC/1pE5663KXtMMzskf5ib6hu0XaZhkRzcNYvI93N1F8apFfHBZC5kt4XEK8dirpjJVTMNetlxmEOyZ+NY9EtDNJY0UFBIiSZa19HE0FvLcZVm652D42Y+QznOOPNtucqfLy1iZd94SmnHOTHvdG50UoSeFQzegA285k9E+p3vc8u6HSmIIB2Jf6q4MKW/fwcKA+EbCpKFpIqC8xVJKcO1aM6n5+GBo/gZQHJaCUcH+helwFe9OIkebbSlpE/3eCXPnPiF3MxI20W+3JkHJrFxBYuqERW9ksB255y2MTwX6vSyLyMH+E5s6HKJdGXvSGvkKRaKAB1RmO9e5pqBfYgE7j1+keoLGQMTH8LrTDJkPo/7v2Vlzc9hfkwyalKLyq5BFqMPWZWQeFe0hx0CDsxmP4GUWrGtzRFHzn78e8iPKRhugA5cG4IlmVl4aTRbUGGTVTw/IAhgcaIugnBdqPk4zm23XILi7o21JiL55dUyMPXPxLDaFAtw8+h/JPsY9PNdFlsNLJUgO9JmAEgjcpZHJuXLAra2q0RLwzG1VK8AZK2qxdssJjqxAdmKjcTXBHhVA1sbS44Zfz3Zdj7T5sJTvl81hoof3YbaTF11/Bean+reD1IXNgHkTi250e/MRb811HLnqC9IE06ZVXUoQszBUuhH58ePctogZQsLHigXkyI6bOBKOXDKhU2m6KP1g+EfYMgQ9F0cSZkNjpjdBX0CTQY3QIogjv81f8P7jPAxf0/40iE1hR7Vz2RYyyghFHaDvPDNLzJqdMWAPL4BW5JhX1fJZ+Jd73Amheb3/2tnV9/fst5INqROnwBcvWQo1Ma9c8ja+oMF+H7zlALQp1iCiarUXnVk5H/W3W+xy81gnYu/1A23jlo3s4nDuHi+dgZyJvrC3SmY9EsUk7EMhMBxTX4iUc2Uea1c+JdcmRvdkhskDjGVuZPRk2maqzkd2d3gRw+vwSLBndnMcwu4flvlta54oKlt/SDK7IykwpvQORdZb8aPPvalQWLQEvlsmozMgv8Sli7MRFu6V4xDxGqVR5SUm0g5WTPoykdHbO1CRXZLVdr5GP0AXoKqsG6cVQPh5j5WvORyxdWjFGaSQaspd9B6ux2UNw7tM8VIrUUtJoqaKc707lbVCOWGAemyx4qrqlmD3X5OacUZNsZx9tF1WUDN+I46EYs/mBiC3lEr1nPYL/fd639b0Tr08MJ2dbpb6+VmhRcMxtrCUI3bkNYXyyfpTmJuSXyeIYp9/errLZOgTxqWKZhyPikLvcuHgWRwpnbfiwXTwH3400I0waqC/XfvHlUXoi7sIlPkB4b6SXvo6THySoDYsnJElW3/bvdmok7Xe9tNXNm75H459s4KIJBki0iVxKbG/P221fhnHvESTjZoOnHRq6JWyX7FUWXgkRS/Y+6O5o2okQvFp+8PvtDkBByd+iupGgcE5i9lf6mMdfBtl0wuibzoYiQPKt1NYNCA2vbdcmTQExrtxM/vnxK1dFO0TlktgQ7/smUHAbCp6XNOCvQs37xt0m6YZlXoqfsb51i5pemwSvGVeVbDxtevXh9++PTFB48OB+YH7WiG4nXDtofn/xu0l6ftHVmRUxSEonKf580U4MDvVLqD4uWPg/5GKSlu//rJ3JmFifJgBbSkVOJwOG2qny+t4Ml5rysyciLQNw9V4ctVsIdrTq0InYk9VytInnMQXCwwbqak0idLY5tlXwdbA6fCZpgAJAJQvHrstOzH09CG0XYgv5x8TmH7vZpk3l5P7KjBsQhSePld1E886P1WLpvLibWMgw3WvymC9gMK66u9sugkbrctE6BpbRjKwE3GMUK2/0veFWpEAh3yjcrO94w4LItpF1FTkjEeHqfsDIuKaSZ4mRHMSlPOEueC50T8NgxI4Hv9+LM+u9pfk0aTWbhxJUxctNuloCt92+yZEQGDO0l1J+WIbo3zqjzJLVkIaGOA04rSDhydwQ6eHTR/hcTNix9j36wNogHIcfo1w7qbHyRAWBgsr40HX50qjdajoyDJQbSARwhKXahwfhBBSw/VR5rLjAmHQPlg1oDMPoJVAyqwGPRq6qoNZKcj95q3jUSQ/ivQ65hSfaCG4k3fmxi0IB77Q5v0Z6DySQV+v23wQFJpzUOghFRX2GLUAyNH1uqJD8QfWjyOysLg3ilxn0dXwsNAV1GILbG8F3N+ZlI0sD/fIUSrdS7b8LtjCrBO4yktsN9XgrM3MDYhToJdcQmCUkyjKtinDXTLBJZibWDMYksUqTNGQvpvPavyWIibHfzU56YldPc4JenZHTdNbey9pxnE4GNro8kMPjGFSelVJBX3OVAdk5Dg/khO940EpMlvRnRO1u2y7ox9uxPrtWVHSFNS2VP8qpajzej6TGGuIPEPrEQPr3Wg+2kfi4qz0TW7DpJI+ZcODzmMV7yUdO7f/1bLofcoAiVUsKNBxw8064FMYZZCiGQ/NMxmiJs3h3wE0mD0lVNeEAuVL5dOFAEVuWSqtGLQf50tm+29Y8/X/DGreHXMzjSuyts6Rv9ErkZ/kf0wE97G75QDZDE3pGCwQpf8/waTImaIdwdruqOXftY9NaOsge4e21q2qX7Ta9J2I6shmWtAWPjhNOUo8ILQ4Nk8z8ERYPB7kTFEH62iQtZJDd+hZzDtzdIC4VhwgWXvUoqNBy4QbtjqbxHooO1YqbfSUeih6QRQDfW8w8EE6MxczANUi9zPLqrbimdbiir1ygiLl++XYY5SOWM5BAdZNEiQfJMvmzM14P62VEqBZ3WFBxxkIsbTcm8dENOkUa2s2PzFELl9gFwmQBCsjOe+i0Wm82pCzlYfhaQfXX4/EQFfySoXB5o9KVQFuYdr7YmLRH6h4xNANb2Tjkj7gBeNELOhKjpUZDQJUxR9x0U5WB/NCxzUoNdF/KKT/kVL3jqN2x9q5UZ1toQ5tL0NTl2rbnoRmySlweidiXz+bLIvqb0/uAFR7jd0vcXD7WIccmkFom+fr/6lJnLCNoOHkWhuePSJA2kEGPHfNr/UvB26zT8QCtkvcamCdGBbDSOZCQ1OlXrp8V7maj01NMho0oxEOlAdCQ0dCPuEWdAL0XLL9pvZCvwvhsGKd8T/kbXtyl8ZhZgCNL1nRorDTe1Fdi9CFUuULSM2GxdmJiJOZy/mvOijyOdUJrzLGMyKNl4ENBxDpXs4fGAEspD62vtQ7e0evKDqAQCncIGX8KcEk9LfjLEHOPmYqmzoVuz+R6tQXKCQJ6H5bPrfEoqZXSjK7zjwxavX47ZyckNa68OO8jYe9zobX2udGc0oOC6JvrOCKmc3bCtCf4VornoSZUcSAuRkYurU2+E/vwKgWr8YOGw92/LC/qi2ezMbmHUReajsuEyufHJauWqDYsTqHUPhN5Yv6jMtxJOFuR1h8/6tJmkjqWnd/Bs91t8taiPmv2D7r2Drv9Kmr7pLnZbU4z5rDT24JLDq9MlDUNPseKKho9R4/6y1Vh6b4/MWcG5Tg+M+aBl9ejZXX6mGZjpk+epz6zovh605n1Q0wEZ9uTDnTyEIz/M2zJnLHiBb8wMmRoSuEvJurzUs08EhH/tIXnLTjfbQFlVIVkhndwT5kmsmYzuZ9dRoAPX67DdZLBp8Px6yiyVSCK3VpDdf0XxjP8cfqSoCCqIFAuy8bqOE1H5Mog17TS1NbPdo6gGPe/NjnXPCY3X8oFbgfQZeNJcu+clkTuaiB8Mnv9akWK1f35sTRMYzugAcu4PMKVTzPmoyHQiDQwakaVarnfh6AWYdODq8VqfJNuSxt/ARmqg6PsezncXJb/rkCYoCEX7u/by4SIo1GfALEm8HlhMdWT8cGAU6BT+4TqoMioVjwQSzb4AmRM4NCp6/agIIopBU8GaKw6U37aOZfnLuw6ozHIRYh/GJAOBDEVCmHom2xZCdobM+jOoIHfBwM46rwlaUGPxjyZsidmFCZm4gEcjhy77u5IOt0mRe4DkI3wSh3EpBDZjqEaP85zQYAh1VZ3Bawuqd05VIlYB7rMQZoIR3DlUD2Yuu3pRpK2MmwC/OZB5dVZc7TZOlFZZMGBbbfV8HPGVUc1ihecPu396nV31EfgZFyGmcNtTeRlV6Gnp9aK+QA428ZKjCEd/DsPfqanm6EYcOQu94othPIEXOnxDH22t7ru7OIAaG9UU8JwcZJ+y2X0yvxN8X7QX/pglbBXO5VqBPtr3BMbraHQQWHxp93tq/6f1hdmW0JQib0ZxF9ZvpXEqn2eINCsJrrtWWPD3Ka0U5N69TdL7VLj3J2cfLD+cmC+u6hQh3FtiBHV5R63p9cWxP0wdF//eyz0QxNtQPsYJBKajNzY0rhfI8MTWlavd0vaHQHp7mYb7GifdKx3TJBJ97jy0YgOQxzosf62tZmEs82qr8b+o7n2aCIqRM6wPrcsUNcQMKDaUoYSX+ZTdVhPxWYBKZtHygIHMNjYyCtP/Cv3RjZojTOvfJnaWoOkT69liTnw+paOkOs+kp6n7vKqnKRfFdKsgpE+xNRGMVaEDQ0gzr65w6sBrSMvMwtaPMf+VcvKr80HuvzPsygduJwV6Bj/uU2h1KwOC+Cm9DUD1icd/59lHJMfMHbfP/YfIb1DeTzamJheBJMFLnTq/ftFBEU7ibLcjYuaf0GMm3e9k2DC/wTF+o3Gs5S0yqEoFBroigxQ58XeK2R1WuaYItnRXT6Iup2rRwD44JFRv5bhglqs5zXDe3TieRY7KilvPKIx5j2dWAJBH2Xda4xbPzrhvclNkvRodqvdamu3SwU+oGFF5NFfzEvgsGNLUoT9fyAzMGU1xpgDo6L03dYax4cdHoRmSpNkGT0TsToulkgPV+I8JLTPglHd84iWep+4IjYYdGIAy4fg3H1jPNCYvDKbyTCvoEIqp3l7oim9MFcEwG6KhQs2OrWPnRRC2qMJnWHVknOq60/v9nP0mBLvpvuEFepC7htMGQsdykdHLWbP6wUDZr3IxMC/xgtDDCVtiiF9ao+/5bxPhWofDOABVt5OiSCvqrh3nhqEGLa5jcmgUY/okhYN3zORhOahV1kE3yTombrGhrPuPcpwRXpyQuj15FGs3y6au6wqOTVulAXU6S9dcFjlWw0hr74MBnWuXjsGqEOM1QoG5zE8cZMMDJJGezhuoZhO4Ds5+BQjao8gT0tlBvy7L3u3vp04bz/An/pIGtxqaJfXTI6jWzzMSzyVWdHIHZ2zko2io9lZg1A1TC2QBqAqKVpyqOXLUujjGZfG1ZFhvFWXgju1SnmbcTZfXSU/wXZfpf2lB2WlLBf68sKXtxqu5h/sHWnOtifYSkqJdYIGyO7x92SHjVuPv9SnC7ZcvPdIMeYni81UB6DUjuBZBssng43PNgLKJd0WXL/t1R8G1qC5cVTuu1ZJh13wsMeg6DbbrT+oogaIesNkJd5aChfoXAlyYgWJTFBYW3r1OCuRhQNfc3j8BUMvrq8yC4avZ+mCtWZ55E7MY23kXbQ3ssYqWrAxi9NlI1SqrScLCpTY5vI278sRWash30IjqLryulREgkfzvJH48tuOZ9IR0m68qbzHw65bOAhPNkKS9aNxk/RkJBg38dbR2UCwaorGZwe6KuP+BCKyMftmGeO2zzMzW0dGwlK2Z8tvBgGxOk+IGyVImYl4jWcW/JayGJdtqmg9hGd5I5XnkrvjDP/Q4MoMiYd+RLfKZXeVaa3161XmF2GyiQAyg0zOSJOUvz6XETW/o0l5S/kYBg3w1+vfgUpjSCysBxHkWDE8lZYjcYcFFD6TLlPcnIXOBVZpGUZ+idb9txOXpAspw8TSXoEwwTrF98xnFJJa0hWJtWpxYG4qE04TzIAOoJzjaIFwTw2SAgcx4C7YJEMliJvLa7+LUv+UBbk8bW5DPg8fIhc9zW+rhRMGDBeEhP4KMHe8bak+WuMlkyqsOhUXBx2Ns9BA1vpnna6KYPHzH5Uoxy32d+1FBPA3a6x/PDGkh4Hu3h7ADwiJo8L5PEKAQer3d3eVaZt8gbHElgKGlGT/Rhq2r2nAa+nxo2OMnfjKy4OATz+QVJOLDSASwHVfQnYdOi2QyRU643346udLu2dmfD+tQVOge1T6AUPRie5aDa9918D1jYlacX3L1Tn5WdIOEVBHQEHAYuI2OopxYWeV5nq50Q9DKEc3V06iM6f4LhiDHpce4VE+qIXXm/N/eLG07dTzDLm2nEVY17FKt2IpnsgLTR9zGQdjyhMVjjhNM9KxXQCYqrm1SQ9XjRpxwnuWeUYhIxIr9flcajPTAllxdjopG/TFbl3UG2hsn5qCCSLzs9BtbY5aGx7HlPB0WGz8Iy5YjHV91LytaVU2dZR5odmKuvIT3pVllRtuO0la0mo8Y70WSmze0rZbxN0M+6CYPcvkooasUzQb+JrvYuh1hG59zfSAByaJH5kbJQVG0IH0QMlmKZGPJlar191j7fncMIZJ1PQxg09/4NXAZKhIFAc0ykvOwC3noI38nfuZzO0zKgN3CUgGr7fucjPX30YqgxUcNh/Xg5gseLQX+wjDE5y7w0JoUG3N4+Z8aDc0WDVuQXVBMTSUFC0HzYJoCTSWQnbqHn4wCdpS9/HDlejcjfCQRtCXGHFVkuHkwNkAzWnismUUT43FvnBNAH/iECG7iAnAvLqpmFOLyxu0rQKz00BVSoJmk1+5+4doMntBQGQ/w8ETi2TwU60lHWWr04Lad+zv/9lRpnAL16HxeGK+Vgtn2dejK0+2bJ+RCoHgL/fr4Reo41SmlI90FXaGhWzLnkkAJvddUwpyMORQR1+rOVZiEFtW5goe7IepSatBQLATKbNeX8OaWt9R7wHIXkpg61QeU8i4jEjeVfEgYJhZNv6DSNfGiZTKSonwg+6XZBMYE8Mn6MAh0j9bROlUXToGp3BEZHQjLIy/4Mme5xkGwlvGc20F0ZcrCRWnPFuBJQJUqRmBTm5mQ3rbOZWP59CnKctfUQ7x50mGviq6HM4UbHxWOYWBFn07jOky9GCAgTXVgyLbLwyESmlqQ7ubCsu2U1ARPo4UJCowjJLhP0U3QFzp7QM88lxnVHuUac2WeGGWAfsT+DlhmdX/3KdCBNMHHjAJNaqOoq14rG8gP9r6K/wjka5N5jEUI9WcnTYeu9cEypsQtYi2p/YPwY+7eGJcNeJJRgDT5L0Km1/QHtt6CkZtchbDAzlVpWLqbFWL1o0j4YbjneNZBxs2byFE6cG6sFa/S8WXY69g84z6+gC2fVq0XiEuS2KSmTvRhEvgmT1dRT2RGZJPMNfq53jOw0Gh1bkTA+wQt85wbb7K8270mZehlo5+A1CMK+EVvE6Y4OfUns1088uG1xSlxWvhg+JrPpbOvCTwa4WSYcHuiB9jxOEX1dqZ4j/+IdPcvTDPTN0N8EkrmFbDxcySWinic61TRHWVT+5Nia//DfiGn3kRvkSVZSUVbEEnborNkhjTy3Vs6+uQOHsi7Pp54VXWuMNk2HuirgF10hlEDidaRJ8mdoi2hN8kGoRUWXVIV3S9DgKldxJlR8/8B/Q6mLjlZv5ytKpt15RiJTJH/7AYcClKYmfCU3//crhPoCJgwzIhx06yZx3fDwNe9Vy0Kr1za+9Xcagfn+OqTGbjiZhw6dUtc8EquTQEF8NXoTqpjiMcTay9/OypocGAjwaBopvcusEecyywhJdIhTFvNz5uJOYXxJcs21UCZ6xs3pXu3BXLINngSfVlENCACNAl4wVc8njmk/xgIiZ8yoCHki2XjbI/bGiuQGhonBIk/jZYnjFk4xLupil1hI7uuvf+QwqiIq9fBB79M0vMs+pO8ThdhJEBbcXQlDiIiOGYfhOwMxTMKOoUqyhglsK2+cRcxGpwR1F9ob30tOykM0gVX5u19Hx2/IViBBFWumB1jYbz7O03uQevPyOpx9UB7Bf4bPoBsiKq5/aBCmXBoHO6RbvIQRHpvj8U/M2m2pDuI+uwcHwKoYwVgSS5i6AbCXZC+hJJtWL3n26e9PXqMCoZWZCct9lXeneBOxlvYenJRnR2rOtaUHIDFys5q7uIbF2aevpApnmajcbSFW3iNcX2VHDDSr/OoEeyrBs9rSDQX4538uOru+Zl0Q4Nsst6rDIl7CaaaLLsfA+tlKQmN1Ga4C35LT8kVbK8/yykx4lhkI7NDQN6eXEw/RssW9wEshFosdBxrYVPG+UGYfS8lsjRNGEok7LzHpbGWL2HXxobsVVzxIMze/95yAzQ/Oef2yYtMjuyzH5TLkvb+xlPVmUzYKngtZXOFRjWpfLBNbZSDn1u2YQzyAXu7A7z344jAOfk4jRJHRzEfN9f+64jelc46wm9gFhU/vFD7Z/G+PdBV7ZE0rfgn0HtovwjMNCAMUJb07d6if2CrhHyzxHpy1jO9ghsSYU3kABh2tDIMPYE6pxNwZgJrVa/TenK9QvtL/B6UWX+C4zDF520Va49gHtY5ssMK031E3p/WKwAEJSIJBCGhIenvWckM3qYddO3/xMGhi2ZVwfBYCuhfYnFQ3fe8C0WsP87TmSvFXNvy7tWUbn+eZqjgQypAJbotMUk1M7ga0SwDyzD91lpJXXIqvmAWMtzuy1iaG9zPG8JieDW96wLBLzSwXQLWyLRgJIsMndoSB9xDs0W+6EPCFfbp3urRASX0tPm/hWM54GAP9leAGUOp6vuWJw28WDpRnikiN1m/fQMJaFF1MpKpVzaOh0cSmuy7h9ndTOr06naSn0ZpHJWRK3XV48/zmwW2eDtBqAPeacyW6Qr6/C6xFUqBXLLlXebyxIw80kdxfl68FhzDQtavv2XazhtSwCbTSAjw8bVPcUkAn59hIiA0SZgy0UkAohmX8EM67Upw3Tx4/K0ov5UxPtKh5RbKWDQK1SlbzKSJhYVxUhJVn26jL2cIELiS2y6PMez2yShuZpAPu0TiJzhNISmjHwjvS65JSsEQudW8dP42Xk2D2qj6KLv4pUV2e9OTDIJNsLjWq/ksYSSIiXZApDJ3Q7q33tKuTrp/HvL44sB08AZ2/AiZytkddsexsklMCrngFEc0mEIdNn/OcNCEKhlHnpgSyLq2EFw54kHa67Txy9dL7oEMzQT/3ldRuymSpfZrrY6Hq6pblglC0dRiCgl9OWmhtglnDIL5ognX8givw4CioUC2lfRrAVPQkhIyuTWV2s0ZMFIK3zejIoESMoL9kXKLxEzHBINfsQNJ1libWQtMfe5ovVWWjHwUUvYsaOKuiY9QNwFwHlMqZ/8bXGZ4XcI0frNsTRnX8J2FNMAMdZZqCQoz0FUVT8XB2DIOgFEEDP/KRlLhIi6tt73hZVzUEZlCkW/OmfNzYUYo0wzeu5CCelToS5bZz7lKnymM1uxnBy10TLEllHR9DrkzajHXCe4tuuxv3YvYy/eZ78eXNU6uZBt9F0C9h+LfKKE4jxTC68Ltacs3VvuaHQpVK+jgG2kqF13WNgaWKdlNzlfkhzaSOcmjDv1Y3iZtSVBDFETPWtT8/2rev8QwapZzV+/1MfPJCdPrZz6B3xHL2KuoLQqJ3Xy6XvtQ+Ez3Mb/tveGYix4EOfLTtq4qZB3ewf7Y1+Tq1qq9cclCoH0Du0TTm9ft98lqx5ANURsJFxQPr9ESanjYAz0JmrNZBYukIP6yir9frwL8mJCfBvlblbR0xUB99/0W1ZClyxNCxuGFEJ/lDrKlD30hqNtReEbNxmm+alcMQU7usixCrakhGnlMLN6ogOZHvDZfCw0b7uxv8APvKA9c3isZ+y92a05PiMF6fYi8lbK72JPJ1gIhygWk9hChM/hOPUcPeXDfYJ1yMToSZv4oOVvtLLfwcfUaB4w5q99joDpIPP554E4134feZMmktlRa8Vcn5gWjgWmNNq6dHiGmf+5XgjZyUAZZMbECZKKhO+fGMC7FDc/Nplwmh54VAstP8pjaMVUvOgXgqKA1DJs/rrr33e1knzz3l29Xd1O/vvvkvzz1klmWUEfRXqHVUWx9KS3CAP0nIEdeeSRsqjXsXcT6W89kJhODJXMzf9BW+BaZNzVZR54awudXNnOHwxTJB5QupPwbGrb6LpLmzpUFvz9qDE1X8uP3/0Y5v/mo6rzG8ZtCHw+6F12SU2/fXxUCxoby3z8Y3z6gGya9iCBjWHDK4eGeQ6xCrtO8frrMPZxN363xsvvlSt7x2oRCs9CMiktJR6VxNp7NW3oKsXII+szc6n7O2PZ+BF0wjS1ZUJ+HKgc6FK3kzhYuh2YmWDuB4plMWx46TyeW1X3XVkpOH3dLywODiJ+516Kmki7SXsAHgcnyoUbAaRsLh0rw97LxoRyKne72XlPI6va+TseKNxn2ONJn5lIq1VdHFh8sZD4+PuMw1BsUFGfokNSmNVeOAbvFaJ1NSj4Ii7Ah5PoAD5+BIvfu08H/D53V4vg8jEj/OwwIm71f2JHeWjhfm3LcVq/DNWu1Y3THka3iHg8eGdtdX4ffm++1ro4owubmy3gP7vXbCfRIYT8/4N1nhpoyeUnvwiqsE2nzcCRxDwc+CZ8VHUphSSR9kBbJMTn3z60301P4AD84LaMZFCR+M5+2gbBr1eTeDn2SkJ5Va4aotl+tMYjMdcsS0Dtqv2SwKudA+E9vL8bBOCNNMMD/95n9n/CVWFR/k3uCK1gWZ666AOWrKIOXYpF/EIqOkNCXhVbQ/asiHLgsZM9xVXzNxTm1AL6ELzFngXNefOC89foz1B1+wo2TN7iGud1ZbHsH/mY0oXL+5pvp0dWGEpT6F/zrdeilt6hYojHdEmduJ4pgWnjAgNxwQGW6eS9hMhMvHverygvi1PCJDoXoOcZVwLl+XjQ95bzMbA4jBctd1MJFt4csl2MUXT8euOsn0fA81TF2Z6FDwpCyt8WbJXOuhAr7Q5vNUU01yeZZ33DC2DhRXhuf89Vpr3DMx2erJoM7Enpg/EqgMYKRQ4OXuQumdsS+5KtGU6JWPISdNgtHKu0kflEk+MK+APDqpwQgUmmGdko0Cx+uDjJuADD4XFOnlUIX77hf8+6hvWH1U2m9oaOfPzKNx0HO5LVRKtOGWERBPOZLUhwhbtuNyNJbHHES4rdxNXP//wYXfo6hVTi4rRwBQu9R+C+xGiV4KSFo1orFqr1zvdSx9UaZ4nrJ1gYjCRCVX53D0IOG+Y5xaVyih1mLUSrKrxfdeYmjn5XVLet1GWMi8i/VlLktVfMECeOP58IXnThlPkl+CdgpaX/+Iev17LWFyf56N+zUtL7AEjLZqb8fQRfsdwhG3XRk/B+1Sc45BtoXoDWbWJy8X/XxSlFP7FYf26xlQAqYZbC2kwUJpwTIZnKeSUCTK43N4hH/0HjrcNzptC0ZXMrFXHmsgryfOQ3h0KKzSuLVUtClrl/n1rvnsN21Qje/VwLF1wSKs6drqx/PDYrMuLKzVXcGlaQd325eBdhTitWcFdEby0KIzIkTux4k+WUFm1va87zsIYo3yahOPQ1QaMgAxAMyuT2+dUFQvhaVKipaDi1q1+BsdRQaQGVKKgPBUME4aLW9DZlKekXIEOcxfH8NGqLDW2BZGgYgrt8YIUY0/VKrYI9160UHEPfv1z8JN5MxfUKgyQE+XdYeGrv2RoFt4fCq6FilfPXOH7emSugmD0ZLQzKvzvj58NN3ZUeS3NAQMGP37Cu6Jmhjn6zqZUZZwkKeIHjC/MPGDI54YcJ6mFXdUeyfyrQ41lEO4f6tN875uTjXx4yYbalZ+bKgSUC409nNuvdGO60Gty/E2a+qJiS7pFIPMVWbwMpxiJqQ8aqGidRrlj7FFsa91jGeecZVvmj9/GUj+7XyWGN/F6sFry2IXKHvl5GDSuqnGwsB2U6PJXEPTxi/34S808gB99Qc6nGiuEF/ehugdIzOtpWiNBJe/wkuH0Pq8KSDfv8R5+fwbIYetCojbPCw9MXCyrkc0rzep9G/8tEVZR2E+zBgb654dw58Fz+jQis1+P7XezRsxIShRFGb+PQ9H7xcBkwpJ+OuOVWNyZAfXjydqo3B8tS+60GNP9FrlO+uoNnhzn6GlMZiep4YJ/cKED3VkqFXmuauHpfKTaet4OmSiSHUA7X5taK4xJW04w2G3T21bhan7N5SVTF2lTMTrM6jebl97JxPJSpKof2UUHHGCRR8c8c/PzEpRorlhtmjBSkS8OFxOTLYql+Y6XA5+0TldIZpWnRSwvRk6D8itUOfmvJTx8Fl+HSHUz8jheAL03qNh7GvFlI1gZE836EMWciy1wXLAo50kzPgHd9MElIoKBmuaMJfXyB6YjJxNrVYqCV1VkrBYNKq4/81btFnuiS/VDZYtlCfscVW/XNZjphoINorGwOYZZ6kdJaD6K4rE3n7/OxKe7kqxyUWgiEssoj4Ry6oSuetyl+uOyCNa6RTfoQNXFroSzkyS750fmKwuyU1p7+N//NQC/FNGUGAY3EeM+TEJGLmfN7Xiv63Ez5WeO2CyePYd6XUu1CBSGI+HkbxOspn4D8jL5O+T6b7pWoP9lX/4PplZN6mk2tmE6+QI25p2nqciQj0/Gc0chLKQ82ZpdXtrrx0xEC82pjPmvr5tytoIUfXu/nfvT+xihBJVy6ionbfjHhFYAjWQXro1h2aGduQ95KyoVElyKsycJWRsMDqAJjYl8B+QXVysfltiHzdPLGrQMhi5ty8sfBi4k7NfYc85lut31v6dNQrmveCHp/vEG/aHe1QIdZ5Ptj0xYt1xyQZ85LlFypD4CkIR2MKqrvt0w4YZj8Xem8Yl9KcCnGRWT99cBQEhTV+OLzE1V03y/+eeiqtIkVCTmkYj66lpfWHfEi7kANt9+99y/rt9STD79TxPwzuvauO3GxLa+7rzc6Und1/NiH/H32UX9t0W7yZFH8nKX64EBvoyd1UWCmy472HGusuF5PjlhXVZII5y5/W7+z9okw273wcmFvbFGSSDtj+XgGj5PIPr67mmg5DIw9DJoXFsXcYzBAZORSzmIztBNIp5RERw54Rv21JR1aZ99uKaYQPm0C5l0I7gjxwq8z2GBS5iCrnWsFmUG0pv0zgj+BeeA4lE2yTT0jsWatHgR86rI/MbYpKzQru03V26rmvF7Ru0k3h6PV7tWTxvUHOmZqu+C8EUNd4rfM9kmGxgZUP0miQj/TygzMAMUh25LW2jgmYg+Er0PCLKSbw7BX4eSmNyY0hKOqqO6Ipn928wu+z48dAIrjlh6qNBoy6P0FQTeH/Veg4fnvkvPAImF7or2qx8p5/1O3e6O3qMgbB/wAh9WLN3aNI1kvFR69GY5LhCbq53PUXhGZcUfvXPQj2IkOJ5o20hNmnhvl5DTxVjjqNMsTMibAbK0j1d+JhRM47jz0wLOkWSBnMGlgYGddQfqDOLT7x/O7gVrfHb2yXYMDQIbqv+JhnzLil4pa0s+E86na3Tv0e/LBQrnYIIKZ1TM+lXAlSTwk94ZpZp98MR242IydgFfaSq1qbOrcRGWwq4TSrywe8TEem6MD8Fh208vqJeK+Uy1YcnHS2iA1350/5Eo6VF+yTkrL0DP/hRCTLxonUgB36+/65jTSL5V/LCMmaodENTp1dsJCOxTT9OLsQUfSgeA1jSn6+/RMKyf9iqt24dXLkW1RjUyeHq8IEvGLzduekUePXC4a2eL6a/dfhVZ4vTT8m7/f/vrMlnOeXBpyBCVyo1tkAUXLDxdg6WifTW48kYgbt71dP0SZW5FN99af9rWenDXDWPOhY4xDRKb3lqASmGiq1ZqnABJWC3QpEb8s8DDzFGVYvenTmU7SoyJT16dPOOQfzCOz/tzy9lXGQSzt+y2oOnQy1VlLgova5o5fWT4Z55A1F4W5ELrvzv9Mis9jgB1XtXBDYXAZa1v+cHLrI+/1OuFZGn3ePEHO6YJ07qralktqj/nbjl8rgIO2B4yWR0vpygmj7UXJyidOtDZGQx7qXgo79caF1O6rpEYGu5mB5/bZOC9fgRsI086JPiGX9+x/ampyuXjazdm/dSL5jVv8w3lL+S/ePUxzM/0wbrcvz+Ig2KaVN2aC/sxey7uQLb0r3xonIC4Hk67YhoP8Ri/U3Xna8sfACbq2iXUYPx1xpt4F17zMRC/9YqGMu9N0weSONq5yZOWmS55JhnF3b7y40dNHt8oRl2y6yuokj7vn6aWnXlTtKkdofHq9u4taVC/80+c9SFANXuUI9O53r3XTJtWPGHgh3wtVuMrh6ag33vUwRhxA33qxIbqK1YrqbmSfXcq6odAm0nqoIMJA7IJwCxoV2mtIaQfFfLKhFft8wPI+yszB/PSxorSEd80JlU7fXPJKy8wA+l3Pr41LoZkwpBRIMWGCvhv7JrUR81Fcunc8X2OD/xcyy3w7FFrqXJOJCQ3+eGixKKXvve5lcPnOXVeV362i0p+KTT86LjhzsMj4Es9Bg0gXBMS4t4iFjUCOLytVeXy+aGzyuG2r/COEU2iLUy7L1iWkX+oJ5HUD/9jB5wIV757noGe6kj0qCe8W+OgK3GQpAubzsxPt8hsSi/e8kEbctcktCSjX1aeifdE1GPDjlOG2sNptzk3ZmEnAilwPjPanNUiLWDvnsaQsdg4Wiop9QI+/C4311qU+r0EWf2r7c405YQ42LmlkBx3+pQIWjuzbS71Zg5zG6WcvzSXRkJaLdKK21Vywq8vgU3poncdXHcVZj5T3hZgbMXYhYXxO0DCIefn8fB35q1qT/hmGcvheZcpKcB7Zd0lQDj+7q+ZVi9H4ycJS6bt6l+Po32jzjb/Ascn2lsSML3PpS9/FrDlGB3H1Q0KMYM1I6VVkHbtHMd526kJZHxCcudFljqxos7aF1/2DtPxn546QjWcXVwuXn+g6IbnSsbOgScbPI992agiQGfw/gbGfBPcWETayhgnNA5JwEIs+dVlU/6DgXFpWIDyMdkZ6Z8HWxPc0ed9JF7t3T9XflwvEvUNcPp05eAuicAln7HDjxuzJHNOF2MjuuCeOcdLmR6lYgr+0ykWDAei1pmK2T7702d7Tuq+6F09yCmp7HzCHu58bMNHlHqDpYncL8YhM2/g0ckEsXejxtKe7Iq8ZuwwJQA9mxOH/KkE8KmqztMa+4LQhmH75BI56BRFPLRXXqLlc8OP7u17OqV6PdI/2gT2fF2HLG1LoUmod7vMCBQbmu8ybITjTbouyvMIZgzEd9kgzUv9Ytm1pwVq2qGz0iKiCvyDtWpfeDhF4XkAcFh199o2bTywwtyO3hz5PfapBQyz2zD89oLK+4uqIl944+2eIyKEUhxQlTzEV0fLKlr78yblKmsmCNbfuIqRb8bJSWzxeteZDTj4bwGNZCzOflJJy82BKYZZxsKqj/VPwY+jLaF+x3FE86qenURJKqxGPfIwR/MjtMbr+VVdMgbTAD5axg10+GCY8L3cbNCBz8ei9g0H+nQbTAjeV7bsRF/wHUtsKGtVfRVE3sviv/hqGpNaqARJzVSAa48I+r8VsykwFhAkRxXeJ8HVlEa7MwZhhk/7GOHkufI8+/8fvTim/atq0jyWSzVEzZlNFaOPgZkRGP5SzqcBlreDtwoTz4dspxf02XimccVuIezxAixaGHQxR4Flcgddsrw6CqkarS2zwwxDJXlJfdbINaNdPPwgrpPsUxJjQBBV9Bcsch+8siihcnuVOYIXB0hLWfkLL7TUBNMdGq34HX9E394Wyexdv+REkR3iIwpF35lqZdavGTvFKq1+yx5qIghqRbC/fgQoh8eJLg8031DmNtevRMbfR6gp18dtxBFzMInqQPJPBqvuqNheE8BRN+vnq1kKZje9qYcjvXiPz1y5BPJeq+ShAJF7FEINFilLfP8fAmVPRE3FuVeYLwaZMslMapGK24Kp0O+e4/nj4S+XZ9vZzWpdwqQ/0oDPXUZuGUcLy2psVEQdSX6u/Z8NoLldOMwvuRxTtnl30t+9nVlXlVA3r+8bL0x/U8mITENw7TgHQjr6Y+wowOliBDKBLVinsASILC13Z3bwT7IilqQi5zbmNOMVrwOH0Enf4F7fDGlUN+mTO0KZP3JXbUfWCzmmv8dU1kHWXnxjhis5oYeED7iSNyeokwfsy9JwvpNrZGrSszZcnz0MWzAWim3BfMPpbNxr4uN4qGd370PnqZaxQ2umBvAuRRVNzL0NVe/GNHbmWRNHW7IGeb9oKKkYc/iKyis3FGqmbC92FsTCAauZq5pHfH+DqVg7ko8KfygX8171tKK5NIrVyYCbUIsEApP/opWqYxtrnDV/nHSXWt87tlhWPRX9/o/KIjwhF9rB6kdDrQ5GFA73nDltNnAGmsIUR32uK5UFXS3fnhaK83DQdvRXuc/0+4Dm7PUThZbtvFEAB0B0KBG2vZmNsfwmAUuE2/7bxxlR5IPd7blo1noDo1ND+BVQOwI9v7El2Sb+SdU2c0FWTwBiW/hj6bt7eWrsayG8gU/6LeU39qJVaZZj8NYHQjWbJWwh7koZM02pYDJSvblhYUKgsbmNLa3uqhr/TRJ8weX0o6Dhw7UPbgsqtdEW7iCKuHaNKOdN0FmlhuZR1hlGi2lHYuT2iN7864i0VGewgZ14UAbW/0SgEMlZhjlqbAtkq+us7ILsue7j3UqL95e674AUYVvFJhbauIaccCa2aoIgNE4ia8HFSJcV+/WNvXAjHT5JtTT7GBqZ+n1n3+8gG5C4B9wDzLQcIZFdk7fMhAWmENIJw2pHHvJl54RrByG2Czwjb0zy5+mqxpnTzXp1+xHnh4G/d5o7FH2QbijR42z0OmLZp4Sy/cEhMMC3wzvVz4TRn8hFzGon6zQBGmDXWq88/mW/dBCSAN2H9qcOlBje+zhIbLZx+653a//LvVCAorTghIGrtGv8h8HiiFwfkaNcLd9nUqVR/ZUWIjujDlJYdRqPuzgBU8PIBqpz8uGZS9vf6Gbngwfb5b5TBhhtfgx4EeIJPDEXv9vL0iL2/hkurRWcKd00aFQ1SEdgpe9YOGARZvv4LFMNuwjsOgjdhKLOxAvFP0Xe+vqTPHAOp/Ea11R2O2YLh6RLcrbWh4DA38JMtbB441b2ZWTCoKdPtqA77nMBQcYM3T/RDqkZsK0804+yd8RtsY86ebUUpMwFV8xMIeAdCkoS5c3/SlyEmKg3xtd06fOmajSW3uPWDp/5qPuiXzxJNNG8mJu1LrPn+3GR9eYCuNHc7+GALjeJJGij5xueCSzSRa9j0ITJKonQjJvVcj4jsi/3yGvjKPTkudkuBXPkCbHu4nxcUYB2kwVQQLtbPGdPVNdledVTvit544v1slPHdIYOsgwWXRTxZcnVUrawpk935zoFQezgGAwZKhVm2JIQh+0Ll34F2wXbu3HREqC86kZzJXTrOJ0w38yQNY2RJAymEbnPkKlrC6JKSlA3Xry+RdHjFv+VkjRHYv4WUTLSofwlhIKe9EVqw4Zd50G6+27r9hroL2EGUh1OMGi/UMQqivhjNtUtEIFrUfRHn5YNOACijc5dY03zqVLOa3CUQdVKyy2MN2Vqhu0rTuvJ3hjOh34wz1GYj2DGMQe/o4EHvYQr++BuSuVVo6H+d3P0Eq0JPcEyFEiE7199IAN0jaZPxI364Uq+gU8hi47RvgXME7RXs6mDhPfB7n71xjlMKnPJ2Kdq40LEr/gX3oejJ4rWt9cPe01vqvqqZOKJNKA5V02LHHuxa509eM+jKPlfOg72f8AUowlUC28ug2Zw/3wRfBJQEvt3KvMgJ9rGXUgkeFE8X5iz3AXNIVae8vR1WNOgn3FxtGbfGjJD6lkmEoNDSJLDbtuequ9oaAslXGc7dZ71afZpBJW90uPopJkM/YLjDoKOoKXJJqU2KaZ4NBAjCLE7s56NcvpSLmSvBSIe53PFzgINeCzVnPIh1opi+8jI/HfUZga8LsKf9NYwTNF7Z1Z62u+VDrD/srbkZPddMy12eO8r6tDB9fU/7aN5+Bdd/Mnb8W1OBBihxzgpI1muhxH0l7oJScK6/Ax116wPa89IkQfrGusbfFnmJqzsVWNy0xE2Hns1yY6ysTp3e0NdDyStfKMrLdZEe3Um86wy0F5dYaNCjTB5meBC3cXV9kebCSOeT0irWVW4pBcz6zDB6BztCoP80auwKOKDg+M3p0i2vHAIIgqyZ4RCj/tb4Xgev+SH9AaA3Kfptc1c6MSz/l0z8iyVX3llwb93funvt/VdNdLNthabXHTD2HAofvHXM9VwBdPgDMFNdukRB9yXbTIxMbE8/p85AfUR2bbOj60QihSker2U7tloB/I5eM5sw6RuCPB3Z9qPLSieU6+VDnzlGFnhXzPhd5h5bcM6LURM3oOi65h1A06h9bFqB2HtqK9fjtlYeYJHtvpTVmSP7YdtH4IWvFb6T9/OeN46KuNUlFW7mt2yjSzRqjrCqltJSY0AJh9TEqSsRVrtRrTwe+jeCFzXdKBhiEUrbGwiV/t/tJgSSW0/h3UzGiQ0UJoCryOKEfj7xwi76kZYT4Jkg3IJWAgLrSWUkwzZra8T8EL2PRPwLKVtB7r4YMk1xOtq8Vto9g7YYQdiCaJHIQ+8su9bXqDxX4aKZ4NSIX3DclpbrKtwZygGl1Defjtk+7sMFN0IhgEm8Gn/6QgjGHfpjD/jkT+iQNQv1BQXzuX6B6F17TzInXqb3M4g1TGZZgL0ykoHP++5W97PFdvfdjLmc+SamSZ74xx0w40DQLKPlSlm58wrFrpNQSDdFuHjExdnWYrWMGvg+v+J0/oFOGkNiX6MEovKybaXkkhLXj+Arv7fLdePsvQ0qZVI0OX7lcTH1s55yz6KKhxCt1ujSsqRO2V62P2eTi5zbmyZWaBoIGCTVfoOUl8HiL2OFHpU8ribbH6NKE2Wl85KAUz8LNbEsDKzeSd2WOXPXje21owMDap9ULBNT/GWVLjJ8LY4nHEV+fyPB9CSuuFnv7FjnCl06YB9ElhcRYF0n7Ys8SUzjvChzUtJQsn+bWhX7rNN/f8EmYPlk4tU2zZ51xfL8jmJEvHC3W58YQNwjHYExpkGAwly13Y3A+Dz2uzIH3U7lj6wQR62cFi6xKypOHbSaGK1odyCCFsXCqsI3XY5o21zN36tKFrvcKXJmf7JjXXZ909ptO1mV93q675RVao9uKzMZT/SJB37pHGNkGioySIcb+nBXpt5x+gwfTKlfaxDxeqp4WxhA1VAWC+FDZ+qb/d7MPHMfgIR1ZRc+gkocjRl3Y40otFWlsZDhr6EEVQn2moArZOReyaW21utl9PLOFb6++FBV61nYvKJXB38CERvu6W3VROXmy1VmchPP3HwmK6gEhOMBzsqJweQji4KeW1R10EgnjnTRca2XF63QQ3ktjDxcCpfqFpeKV489YVGH6s7d1IyF4Z6XYv8mh8aOv2QRWeTNBdkSg7JLL39Rprr9JKqIgUvzjrVEQfZCNrO/Jrls7qzztw2epBVRjEXsIyD/ssLwvSdTPTToeGPaO5l/khy3QobZ9wxjImJUZw6GkX4tlGpdaEmxTyr3KnTV/SMisXfPUwAOyxppLh52t+qFN8DnEZ+K8l9jFrzjq4l+Tj8iFiXFlVYu/D+4nBaPXxu+f/mjwnNLHa9LRlR/hT0qMJdz+lsoc0EVc/m21JdehvivKf6vtbw4GcpWNb6jLpEDLEmWyjYRGYe3bX1LjTUxKa13He9nzsL2Oz4vCz1b0SUUBFmlFhVsoEiITtDWR0uX7aaMPWcqiTkvmAoKshRVLcm3Uoo8XyiIYidZOaBFzYHXCVb/FqzN1tzAoovyk8GVdTCvNPPzP0N+9T2LFMiuP/93san/a/zVHy5lVUobS3GsGWlK7+i+C+ToZ6VcExlvM+ySZqSIZj4TGgzXOVPOyjmUTMHBNZAUYr1OwbVUWkFzKeGBixrbFgOD1tBEY+jHJWGeZ58Z9RkeQ+nBPNmGSYWwa+CxoNk/jd3/jRZK4PxJ5f8ZYMrfGx/74scRKr29zSSIeKKNj29VqWyRRriL2AQFW4roSWCIqMUAAkpa+j4vZNDgK6oCpyzB2FoHG+n/vqO46/n2dr89+AfBL4LhhSaGhYbTO2i3/l1+DkHrC/ke0xjocppw9z8ui6STlTiszvDTNqfxXnI2qoFdYUQ/xun9g51MBuZ0VIgHchhZpeAnMuXvCwhq7Hnwjp+TuWmRcwv6xILiIyazcef2Iq2PuUrtJaKWo2AjI57ONmbOqBNZXBtAFGva9f5eb1vJPhhMJ7QQCbG6q0oE09gVz92YaNbMTBPjrI/NMEbR5u9HBl2OdsuPzFWos5u0rta3zp/dfdTK1+gMoJS0UeUvIxYSauOIolYcFP40aiTGlBjcZuWqeiLsUBIUmLcR5M2Ebqow71oyA1tlT6SLSg0kat6MRl0iOz+1VB2OjKhc2kJiBjX4Xt1s1aQf2GQIXtBKWPc5yGQ8FXxyaWBvhbHYtQNUj2qXdnpz3moK9K+JPXCMnTWSpKJJAU2lOwRArguG45ctLTw5fV73NY1Vra73IXO086khO1q4/Bfw1wQJEcWv96TtoXYrfLnoWVIO+g6WqG2VtEtrvirZxlLDqX9K+Zqx25BAXWA8IqtoegY5EUsXet2dGe66TQB/tuICa6mhThQF7KlGLDg70fGktpVyddrgIh/uivvsmRu7PojgCuQ4Y0zeK7tTtNMq4BUMBrmttPtbgJ5zzGpEhVCpAMwhI9RsJINXEuytzpILeJvj3xiZoYFnSNsl7fdbMnaGZVTAU1p2Y9aGJhxiXpSQ6drIVAxqDJxdPXVC/ztfRpDfQQW/frsvd85ATmSTY7VFx/SHpgB6k3yWx4Xu4CZA3za+pJ4d+HA5va3uHjFS+dPT+c38Qll4kLHynA7cqTMmaIo0HyvtPR4+NFvkbdm9ccMkz0GmKz7kAVZpLuEK6Dchc0Z9oZ3OsWttYauSVNYwfXN0dxi9uEtQWM7UkaxQk50/QlqX/ZxxyPt5xERRybNtsz7w8DrHcS1n1+g7KWs419c1ZT0gOAYLqCmpMR+ynfDzgaOR3iwVUkfWyNgu0g9lcxRcIiY+eIE1D/YHk6oBO7y1p8zDwDpmZ6ENc4UU5vIpd+hj7AHO3emxw3FLjuE5Y3YhHO9XvoZHpkniMge5u7z6+d7TulfdS+xkfsQc6frYV2/pf0Hig8VtxOOyytTTyIl4mtDn7sxwRb4nqbyBR5qUQTZnAPZiqyll0DOetbWdcypeEuqRwdWJrO6ZNQuP4ajr2cH7FYKRDHemCqlfWOWVEwCIlNUq2ZfGXkBmsLhfzE4Kyp0HFO3w6qwhDHi6T8+6HeEPCR/Ch5R58WO25gysLutXhgT2gGq9ravRpRVeKeNEz77fnlTDKPplwpJjzwHtHLYH+gXG1hIP+1at1esa3lxOLFjN/F7DtHkR2XJyaga3MdVgwlAnakyhwverG01G7KtPkEJZa92JKi9igRWzHaHSI92PXz/8C6j8frRrpAfs/VKDqWhMoTVkNiL2MGT72rfgW0rkYUL+cefZJy84Qr0p+4bmQXYsVcKOFq/coEQle8xcojB0XinfymuVYqj0VKOWqPLOPzOgnur+89jX8a4KaVsmHD55PlRkU4puG3CSGThL9WnrbNAYdxJaANcEOuWyp1j53PsUyaEu6mcBMb0C16bbsXF1ndx9Ac4S9k5yUBUjv/IQ8PaFtNEPT9b+0Sc/vZpVAHiTJOV4W/O440dPWlcB2XClNCd1VHpUX4iVO2sNuac9I3b9OPwmWphziGUrMZ1imCqwZub5WP2QQ2FzNulF5Xv6U5Z+KpBWqHM2YKdgtWzDEpSB1f88Wc8ykTkKAId0Eb8MAz3mA2JaGgRLnMGJtOa695hwWYjFLo74BbGn2acCsDkvMZFxzbKE6AE+vOc8wqflqk15Bict/JuDBSR5JnMvaT5LGKYOQxSUg3BTfdqzQjGWYk2M973q3SkEIPf2f5OYBHzHgazm/+TG9wPs6ot0QKbBp2/RlJMQ5oSZEVB8rZVeGeAZ1tIyELrhudWXRdCVT7Xs5m/USKHx9YzExWGgu28sOklZ7Oqaufb4vf8yWxkb4k/wT6+c+aSCTYhZpQZLc4SEW2J9lhlVkWFKsu7zyUfGA58Zs+52LNooH7fdj1NjFaItjLskGJ5KbyiIuhQaogAZiRBCMT3v0zVlCINM/XvFx0wKHQhLVr3cNqFzGNODW1zi+pqkikSt9r6VoytvtuUT5lSo76rFUKCPVUFf8SN882KEvIldsa+9AvVyV/01awbjTZYSBcLfIFIH1Tgjh5r+ZlgvkaJvXeUd9fWjazDce0fO+rG+AERDDLtja6n7+FjPrQzZv+l9f/z0FEDWm6HO8YBSsGp4sVknjoKZ4aRUKOMs2WqIBGbEUvNG43KXIuDJ0ZY5ok0GyLbowOvDNSetrcYcTQsgTGQpzN9JoiZP2v3MVrhiGlSY84Ml4U0ClgHPSbsCU45YfPJuDK+C4n1VBbXTIKi256RKhI/z1CAORIC19LdpNkKN+7LvuP/RBi0xoWOVIDt5IROFMCPtOKg4iNYBn0RytLNR4Uo+Zt6X0YK9+B2EYm3GbaxGuCaG9YmAO45NbHPvK2+axVcFGwaQwSDCg4QtELWdQqNVgsUlaC0bYSuBlHV8//8FRAenAYk//N7C/6KwOflDsqcVyfh15Ugv1tjaeDJnYvw5lU7IhzieW9j226v1flvJdL1pcZQlU3oK29Z5HTOZysbdEPI2k10tXjjJNX37RJ6s2bYlviHw0YCL3+gXoOJQ5s3jEK/3T5MEr33h6ywiVAMHDhMMxPvrSy660aHs6bJW5iq8KrI3urWCXeSnd+MEtucS1pWTARwzy2SSiv61LoUsgsCPE19E9uGSdEYacT8JIc5dxpQjTlv9ubIDONVeDFszv000S01sIn9ifRIZsLqjcPSmFfGk1+55kk1FrCd5Rqmthvy/pfEVmXnS0/m0whjhRY1I6LCnSNFANmKM5tezaB+JLTSKYmvuh8fb6f40BoYebUqO5YNzeTNC/gCfml/cgg7mpPVDBkzyK3plKcOWRs+BRbE9b7JagO7youOooWQmcZDC34y+tdGH5T6jbh6lpDRYN8TXUccWOlU4H30eFHz524s8/9bAorDKVgHHZrjv+mOTYocG9dzXquEIlvNMJPHvD4M14frP7U+SdqJxNuKdE7hcLxE34HJjpB1X0Jt6gSpGlhUkXMGXmadATvwLFMQdlBOPeZFCaySMBryxpq0xYb2AEmFU0nbAN5/yTqBu45fUo2XYMDaXduLY2cjTc51HOdVCpYc0jIOcLczZQgVnlriNpYnPX5z7WZjIt7wdI1sE9grEnYhxUIC2eaV6O9X7Q9hqkbko0jVddgDVNOc5bkUTCvMOg7Ufc/72Gh9q6Lq6ayRP0u7amZwK6ksdBQ74yvugwu4xsoqxfYO7l1jlqIBjM93vBWATYrsGxW+9LJdmD5twjra6XKO6zRgY8vVAVI51sNxC/IP836OB1lMtOZBC40RIbphHGUv3KB1lzLlSlHk8+U3EpNxuSeRauhN1NqncX2ZULVTaS1YNZHSTcIGWcMYgjDHCt/EBbF02Yj0Brg379EsdKI3Fmo35Q/lPIL2DAuVd0LmF1NlTtFx5SKvh7MWoDuDk6hG/uB5dhfKuZLZd9EuHX6cK3LZUOebSQygu4d1/KEb7TsiVEzMPtol+44WUCsgVW1AyH1aEQDksWeVfiIki7OVYlubGmuEM22txhW+95ISs9UVuW2gYzibcQHje/SViRcMFxGDzFXKnGU3uoCj2k5fj2OGnzN2LzJzOyO7MxndoTnlDL4CS6F+YlY6V+yA5FjPjU1rFQc/LEPJbRapNbCyPDOCGsjGvYtk1gq5Mle8ZJuPypjs+2HtUdh+2FcNqmI0KVvIx0S+jpSfo1/uhREMmWGRDKgb3tl7wr3XyhIQRjaCXl8e/IUJH3M6OwF6xnHlI296PYAQTz9fim8poVa3qlPT6bNMGPOxzaR6TYSbF2FeXnkP1tV5DT9YjcD9wKP2oldMwVuiWvn+cqGj37kppjGpNjgS3JQ9B2S+PPxA8Y2c8qnmUxIM9wcUd2xh7LuFDmyoPOzhx9rkey+smjDj/LPHY4Oli0iQeueRDTUzxSCnuP1LhYQxEqFVabKFyp9IO3p8PaJlZZiOR0x7AZwyYHQwB6toVP8Q9iFp/YTc03TgbEzBIisbM3sLYJzA/7/eXli+tKxzIlRKeHvpeF57OCS1y+vqdXEr6LybDw4sSCi1QF/mpHOXiELNc7c+H2WcEh2eD6O5ydZBDdxmYL+FnajC05vLc2cDx/f5RzG44HFPPNW/R30HOa7sBXxzOYO5g8fcSt/V5EcS3yvrW0zPrnesTa0T3Y44rroGi6Mff5vmOL0K8RCp7BRyb7r7rj2vqrxJhcNdOBAs1+Rawk+3a6mRB13UYI3KIEQtaQyRQRkDemn3APsGqPR2Qv6picdXNOzZyfmWn3/Mjkk8E1coz7W3ntH323ycqfVRQ8OfJ8KWNt25FCKJZTZlJJrQHjqBBj2N8O3Dtc4X4If3AgtL0x/X1HjdxuUA3jX4a3e09Qhatr46kmDeRt9d0GvLjhkdp4zSDQRWLm7o0gHZo9ZyBDHaLLvN+I9Qt31J1fPK2X3MKX4I+svckrfNidKgt70m5MmMLsAY92VNKL9W1nCmjlVn3kYzmA/KWZdhg0auGkPq8um4QMnPptqH3I72BYU7Jy7cs5W6l+oi54kCmKCvUOFz48wqZ2YGKW+m2OEyJUk2gAH8/e3Ho3FopGUEkiTgFqvdkN9TnttzQrrjEWhfGE/xWavxAUKxfUYqutsnbqK5M1Ow+LSkmzqvqBdLMn8DJdnGwXU5B7sZ+HhuibGbB3qdb2KgdB941ooIBLHjxJnpuOqFk52b/Z8m65e6BaotRIbpq/wZm0e7yaatnuazB/rzciU+56ITlXVZKbA77txdKnZkOZJg+umEf/TcOeFOE5t19jmnuEiI50Z+SFKPGhfMQXvC/7RHcfGPTOkMTU5v/3p8LTyKxwlj5Hs1zeOMhezUkfwLuEX46cyv+IxwNt345AfvGxY1E0kay1CtZBG+3n8yAisoiF3GKNCb6NlBPoW2Bgf4wV7j7qytNTZWRuR/dN69U2G5PT16qdd0elWks5rOnTIfvFuDooZLieVm4NTR31W8jLHbylapdQ6u0l+KQ99abz+35AfzEH+XR+92RC7VuHjPGf4dEnYstM8ZrOpy8yIXI4IL8MAB3Iio2D+3lG8pO8JHOQi3jPN/U5/n2lHlP9L8ElGXAH1ao8FRbz5yutjA7abxaSrLI6kiSwdXHap3hsT/B9yVXnDyrigr97Z9wONywnpAmnxvoPQCAloe/0nWGpUJdXGYXJ162kelGPqPc8P0cYw3XqRsOfDexClpTVkFboKmFFTJmyyprwuoaoXy8ZNlfqlHXsdrIK2G7oBJRuaOq6EPBnO2u/12dsNIE3oCrWNwThOUzUVyrg3KECsA7TGnERlefb+i7C5s6F+xd6vl2O2ct2SRXDKaGP0+dCxXs5FD+Chy11B2W6mb5WgPO7bi1t9UkGiJGlpsT+x7zUM71LqFIBzdFRV8psk9A5jz+r7o4mESy4etRHZB5HyX9wM81QH7hbMAXzFWbELtuuZxp3mF/LcNhgl0DflPjZ670lllE0Dgl/xtRANgEB9YGKPI2jkv5db20H8XJvlELTmos/YkIkb0N0x7bQN7Nhi0QWlio42/SPg2oS271OrFevFWgnFR+oUFK2NPVjtze9ZFkZY6nIcy168bReV5TtkE1ZuWov3UC0RBaRyM2E6DkVzdSONdFJVOZSXoaeD6Vdq0tiIl28Y09jTGkjWRZ0DWSHAc+EdZI0fs/XcavQsRSqLB5heW2zuys4rQeCY9Bn0J8dI7p9aGg8+DTf0eaW+FykEXGUWS8KqiXeR3zEd35CYKy5WEATRwQyt3Y4mwXALaQama41pNF0KlJqrRmkiI3pa4jxnsUB8q2dzxmcjt/f2K900gab/+PRwWEpoB3wnqXrgKgcBIw6472jW0DW5naZB/uR8RvlbBqX2M1rGXt25fVcADMXl1LdjlgQKPH/paNx1gqKvAVm3rVKMCCl1FrugAw+zxgL5zorcisV/M3I18HgM2SVWPZ8XB187lnA/ajq/+vilw64dcDMTTrfe9OUPVvNx9rpshg2Mhepj+21vHwwWEoAB4RrimQRUaa5fqEm3LuVZCsor8/AFpCs4QIagMrYpRRs3HNJ06s9bBzDsGHek3JurjfHWcBMJgE6M8xUX9XLz+yq6szPg8qmxAk4aZcRH2yBrNJTQjLfqDC6T4y2dU5XmAe/PE7mg01e6trMwuzyyGBMUSBT+utJVRXRapcue7jYUvV7D/AGBgOAYTNLctrSijQnN7pd/sCMOrDTJTGIbYrgwfHxY2Z+qCCL9MyYor/geacYBjGSwI/Zxbd3NGjYvgiU7vKC09UY63pBoKT3IPsQhKSdj8JriQID6M5LkuyyZcg3ILmOizxpvcJOR8fRFn7DvnfMlG8vzgcjAX7wfaiJVUoB0J68X2FL3bhcBEjx6Ip4S/GD6EJpCbNbRAYw7KZz5xf5uKpIJMa9mne4/zYo+ojujEZjxz5ceganEm/SFJWHPs5B9rXNcFAYbkHDG25+c3whzkXiSOAPRWrVkhjERmj3KW2nfFFwUfaXB808F4QNgeibliYV6iq7MGNMzXdTGyA2eVHXscTVz+0L6raRlfeWptIasepEt4knUFav2xmnmfq1TtU7csRvQXVUW85ZaddtqNt8dB1uWqmVxBof+5i7utNXTqtvC74BXQ7YN0miPdIN8zlNhakxWcy8YqZBe5cwO4uFUOe/iBzhn52hdwf/6GDPPoBBKBq/YJkscjjSlZsaFmXlgihWnaWb1ncIel2f5OreuG9GJJHY2XkPIBvEDgyeZub16UmwkhDpW06fF5wW2pQnO05TgoY3hGhbPXuTenatKpeva9eKR/YyCy7EJ7CN2l35tdtu1Ivk/QuME33Q4Vm5cKiDIDIy2anWIQXvvj1X/Cd/06AChLUQZM8361lA4VvyRXXOhaSagJfCiQE6OQpL+8jv/orTg91pYHuaBQvgGwpCzoYI1z50OgrYV/Ho6KW5RI5OPmrbNYeWYcnTpbmbPyldPUBM1/ftYttPi6gQnQxt9tB4uafdNylzJp5l7MHq9MrG+u2ZDX3nUMNNRGAvL4/vgofX2k/9MTrQd6A1Ul3grUMh3VqMhoLcQMGRxXWPpUPyt3OcqwqpTeeUv5/1KIx+YpkMuicBfDFhyWXDMUc/9IH/4DhpKWHEb9yG3ZzCvuk2lv3klZP/vNwrBdn7G4lIVU+uaS6LLE+pWnFM8RoE4murllLUvzH/VgC+uvM3+92ppFf/ymYi5Bl/M4DotP5ty++6JT9iS9b2PtZvVwtTHCI0+kFUjKaCmkP08j5/U13v5CqHWZPsQXRcywy8WY7NqcWPjXivOrs637eh0iAillFZ9RkyZr9PRhsbMhvfb6LL5k/aJhfjY2BDW3t5s24eU9sbkjeWsvWsrFNIkZa9COoWekHB5JGXIZFQxbs0IRkrusw+evI59R9XexaAuH9gBB6CetQIGvpgYYxGbbeY7qgppHgkabsfBSQzcgWrbCEaOsULtl3HhE1kq7q8Jw82B/wb8JFqIOdRrqPjdaBJG5DCf2WrDZFfhgfpdXS+yhVDZcktf2MnGRqGlPdugs32O1v9yQVE/In0IW7BeOKmeUOmw7YDWXyvV5ZRrn51LGuvOrkcLzPwBOYi5VdH+LSMgDunC0Ru5msG/nfgo8yqwl3xgX4vgxeEOjnCO1+BjVDE3/4ta2L8InWsWWBZglSu+NyA1PcPcoXQeiZrBHFPkTjrtvNNHnjGobyDwaTHyFndDldsQJm0kcNw0luT07TqYoNqq2I1hQWZO3iGhipLzaNp/qrMS0ny5aUa1F1KTSAx9KxMoBZFpfkBGpdgBVwa7AO6f79ZMIuxiCqvHYT0kTfIDAuT+5X0QiSeXb4LxD2AbVk+RfzK2CvgW1Dq+D2cP5onO/xH4LJjKacclgTWUHuNAHTWJJTldaAAIvrf2/b2v5+8aY7FbAL8P2hDfC0N4Erckbhhqcn3N7BTWxyozRK9r9s/141B5qwjOMqRyFXbY9FnFJg7hi3vOHmDbLgrODVhWM1m1WGcaaicfKyuArlZeFFMdNEbPWs3XCij0Z2qZ7qdMbUiPholqSYv0ZxZ/h3PvUKmJG/S/3eutk8ZLwAqaFSMS74rdJ6wTiN5ZeXUMdRJihnI5FtX8IRdnJ4TfXWEODUBnnQ2d/cQc8P+3+74lrH3pAfCvHsc/bNY+yB05oFeKI6k1LGpKdRcfSqbl9CcI/eNMvMidaNokN0HDKS2g5Oo8i0orF32yIzCgDHzOpEJIq1jI7NMIsK87UAncC89rE71VTUmuiNdmp5dJ9EIb9GPkgQOBay2C309GD3rN2jwg+EdC75H1LPkVY2kufiqvlnUA8PQCX+tSxFEyVvfO51WvXurPi3W6hVZe6YEFgB+l3OyBCz7SxzXbVIFrWFWXyIuaPXlxTYrSgepqPiXeNkvsRDB6s4e0WicjhqttIh6N9godH6YlnPEfVCdjICJ3YzyZGiBPqzIDSOIgV3aYpneeh4K5gbpBdhY+c8DQLooSxfZoNmfe+wyaHUoIQbAjom+Zj7/8R2krqGTmrSPUOsaEpZn0BJqn3pqtJWE7G7cvrh2D+dotUv3dNKC/s2cLSxQ5CV4MKPd4itl8oB7Vrs78UyBDf4p9eDZUelVYShiBZ/WM5Pg6AXK/xEEzMahnOY5aiCwSxrWK6PIpb4RvRxf1ntISv9fYtoetIyeyIbV3UOFv7ivaONpDyGWYR3R0Yvgg+DTR0UJ4WTijEe/4q3FUGyMP5GI6786DK4KblGqogUyHHetChCkiyp9LCEPucAOlakS5/LxsRgQThFsqfEuMRTmPpOs7ouoU48l+nsAIWmqGZRYXQHvPC9wnbNUKE57DFflevGd9j41IAY2JcvkBwlVVZToNB/iex5xEZCCNuOpzAE9Ki0mxGD9wM6LFvCchMo7XNkv+mKE0L0d+f20z4FfWBwW40MAqAIf2tq6Mcr50iZXq6VwHwONCPsrXImXTq3d/67cev3zUF/4U575uDNvsSKWc3GP34IfotgwS+gPBPyqceQUiuSXJ4cYahULThFvjrghaNtshp38hQDc18qe3bylh9DcgRvU9jiNoijZOOnW45bP2WDTUTBmJhSh05g7chqFC50cbDlhjqzwbsuNe6+cOvc1+D6NS0RmhbwXXDrMtEk4GMrafWG4Zk3xh4wWhvzNdVrzypqEm4VEJGK2jWI+Mp/QH03gJzIZkvcDHzX3b/u/gX+DyUlK/f71Kx3Nduz62tQhmj3FDHuU3qyvkTuUmmDbhK+Q62vqyRUl/4IUrBLesspqZE1WeHqrGnCUTZep4MEb4bYpHyDmSfRtVfpOwyOHvNV7LLBf/fs/r6Yra7ci5uXw3WiG/M8ebVznfecf1PGkdcs5XZyWHryqoUgqfavXCGsk85BcLx+8MN6EEL/NQzmbxwfAHj+peg6pViTftb+/XiQ9zYsCO7zS00OlEoIQ2BdliXFvcX2dRArVxg7dK9vVrb2OJ2rwZjC1/jnHX3FQYuCycSl3lwGrqZLsMRacC1kgpCpQZHVUYCWHRtXYKSO+oRd9pGclZogY7PK1VchR4a6L890lxg52oAZ+c4yHdfvA3ttAjqqGnQH1D5RSlMit/dNSL+Z7FaADoRT4DFITJCDP2cCgAdAAoqBYJG7bOWDcHlcMFm4YBiBoHgxaJFeagP8de5l0b1DWZVGfPga+VTXYeycroHGC8NRFDQlFROGJS1VmkkVi57TYBhR6I5etQ3sKKuvm7tMb6v/Y291zcMaUB5UxZyO2TNLU21L51VvZ0/Cy9JWJxmEt06YzzQTZT9KpGxib5hso5wq2QRk7HxruE29n4SrDvlFB1YWJLj+eXPhdxtcWbF1dN93d3VHXuEkU16i/lOmlDxYTMPbO6ZSAABoSJvHpLbz8sQkV1+49+Op/ryhMu/8RfbgWFrTD7NgAeYW8Ty7zZ9WQP7o/N8Kwdsuyzy64//vbfowkB9WhZueHVwSMhRzLcBwsZ5e6usbNDKUiWyfmwtOCIU2rjOEohRhN5GtzFTugrMvdexdqXtio+Vs+BdlA2nFB3DW7DmCDCvq7uWY7gz38OLy0sRNmOlOddHPs+Kt7AzIOEj/bVG/9GCeq1zB1scAiw/MElVWczmrLVQSVAeNHdt9U6voe3gQRnWWwcqrnNO6Hh9Z8wN2rM6kKsDm24WrcCcyM+NUe+FG2EJ35DVuDUu3heoHJAlhJovaCs+SMo7KLOwS3sQgrJj0J/aKc4NZ8SqOCHNQH7kjL7ETKfM31o6U3ZGR+eOQI66aoQAYv/Yxu2j1czPDI2HbVXa8rPejsOFwyBm62TYYeiLH08+qK+PVWBBS7xIJb0xkreHYvbj2O8jyx3iyS7sELOOeYLa03k1z8wtx9ZkkEQK0cuc9f1ICjB9oL7V3Dfe9U2cDaZ8xqQhqO5m15Uwg0DUkCLziiXtO2FhevhXeJUYqOZzsYItqAABjzzdx7HU3NUCyVAxWnvEPuqNv8uvbCPCQXECtsakBrdHzAMmpmeoOtc317FUMBea15Haivbxncy6souc0KfGE02jBGbAW1GvGJdafB2AdLAV+ib6QR9uQX304E3XByDoghsIBkz1xYKByIsEJohFyz53ftec7LhFEfH3ZO7fYgu8zFNAZtDPMKEXvcKr6szYquuSjatH+P39oVdLevEbi7THrHkctJ2N6a2ETWo+trfJG7gQ7rTMvuviHcCkuCRgc3zV+UM5vq7uNMrStPAhdZorVjbgijrGIKaL449/dvmv7W6PdDiTqHuGJoLmh0yhZgwst9vgja3/wf5cwM+x3rgk3XO/t+do7yxYL5nWOLKtEN1/l5UqD1dlIe8i+PCrfJaMCR5KLjukd8fP78dyaqNnvWOSLeYSebepvLXY0B2FXeNkEfXRiVMx3OJWH/UoEhraxQPQMcR3yWAXqesPCy4O84RN+wFe/+h96vOKreLGvvKws0jC4lhDC5C+ltfpW5tg7LMOnTBl1jFFaSTCdgNoDA3hCiST3Af9afVkXcBJCthljQ9/vFoykO9lS6F4lVXuKUWj6G25Nkv5XjG7lrno5zBYoL1nRjDwaM7o9PfXKeeg/26bfDkcZ3x1woWmbtb0twsD+ThzVxaT+WWo6Cx4DKC6YkedEl4696GjnFthmiPGhFz7WKFbRGMVoimN2xIA+ER7mRC//8uKfjuwyyZ59YlFiqaU+oTywKtsj9DAhvHi+sN41mxYe+aRkcKcmxxy3ZtsO1N1pVXhQ1/+7MOW4vm9d8+PU3m1Tvn8VgJR3QHzkCNar4DwkcM/wBFDrUkegkpnV8mxoqtlg3JFZ8XZrncGZUzak96j5iMgyKrUesI7hQjC9PU5moWrEsuKIPftcPcnAMDeK21fWeeFcl1foWSx5VWmHaYhT4g9B5pBGHIBbz8hYLPJzKD5kCeIXc/iI6OsE7UiC35sr57jHI8Gj7zvBLQsoPbcWyhs2PpWPLY4H/mBt0x4DcRfFWq+Ce5bIO8vlwSwjTktwz3FgpG5E0PyIH2mCDAjyVmlsM3sXq6jzNpG07fNaJe0rdViUT8wt8FuKUaAr54xsaZwHCC+abtMPnshL3aJI7YvmY36IBLkMLp6C5z7HAdjCVaSBzNB91X8V/MLdGg7ElyxpLy7fWnGCbxmW8uX9awRyrB82kcNQ6StUTRGMUpOyowf0sYYRQUyOQMkOSpz4Tq8nZT8i8KS9HjevgFI6sWm3UiMYIgvrGRA/OJq/MaqaM+mJCXvQ0xIHs1IV4kJOfAY3p8z5Fqfnwvledc7yr/vLbBufKsCFHtgCu33NkyDHXyr4k87ZT6eYuJzDM06XfvA3gXpozyfj+uZR4vbLjYtMxc0hIUDMzLJEn6EowZ5GsMV/mWhAhletHwcV/ByrDYEOkQL0AL+PCoee8blrm6tCqUzDUqeFvYT5IYfz/Da2U12wlprVZM7tqTSUdsft1or2nh4caKh2hNd9B1HAV1vMuHpISDwlqJj5zNJ/0oIL9JIS/ts3LSGG0lOY1NpgrMO8E8R+oVXymHwK7huqaE0eYGFkJaIQnmTV/7AFXAlZBRQZGOJDKC/kCPoS+sGcBr60f1IgqWYGgygFRm1xYxijVtbYUQP6WHKEFcOooblEVtfeTijpJoaVnIzrKE6vnN8mkQmG8kUNLPSzbUzcsCNd15JGVT4BVxt2/Dzxudfdwg6iolbMLDdkLH2pj66Fc1kUmolb/b/8H4o8EnCtJzn6T2F1WE9LiVMGIcHb0O0WVEIhtpcVO6foxX1hNYCOma06jaJ/pTbvBM+4uJ9qwwbDfSmBI+at3MJBWfXBmmFCBEav2AjBAFNEzznwc2S15T1Do50h1I8xuHvu2l8hZ7mfzGEZfsUT1T5ORbK8pLFC9/TwUtIg++RW9W1rhW3piXzsfdrQ8UzpzvsgIa+tDcQ7QzoI+VDrjCNgYGeNr1KInnLHAfCCI6IAypdCLS7tMno9+/5rawfz9INrObXtrOA8BjWKKWmsxhZr6urjOUprRtgxeSIlxS60exY7PdCQPgiX3pXVxHODVY2bDh/SF5GnCg1DxHJ7RwOH4RW36E70lNdtfaQcA3WioKS5/2eQsmZMH0o2cetLZgl/0g/8IWzhPPIVjeBuqSZfuLxbm9bMuyqO7wTsz1DhIF4mjbT6ygkVumouuL1xoWZLnFPgvc+iqd7kTpJfCygvkdNMlT01eY2NYX9Umnjn5rsHDcDFstRuMCrUris+lfkUthvg+g6Xdk7YW66Lq8ZlXIV1Da6mPArL5MTkRzDKphCmuCxVQU8ctaOC6ByxsaL96qMe75D/ySS6byx3BpJr2bTD3pP0nvs2ug8jjpdUVMt4hlABqGJncPptZ4YrHV42FkPwg1zD1V8q3nfmxHTYrcFT/2wob9z0rGCsUqsLDhioOV76pxnu49R4s/8KaxaFxa39FQyIhVkEy8nNe/UUYb8VTzKRsEfqladvgx979+kRbE8hbSnhuJ7owvcjsL8jfpf0VS6Ie6Z2tH1RPLxdnR6NkUJS+pFyc7R8XW775qGTYMZS8zPBxu5oV5VZkP8aoRCUV2X1uh/Dhso3q0/azckVDhHazwf/jyZwUV9nSFUmDuS9Z8CVBJ+Br67WGa4B+0Plu8LkAA6nxhqDolj6uzI1IvVdkl5fsShjGfzjXe2/r5P8osW88AvQeOdskGYj4K5vEv52Hjzk5T20SNWhbfI6gptC7tE2dkqQ4rnNQr6ZwnR6/4injFuhaYpjSkqSduSAPl4zwovO5SvFTXv3Wz2ok0jfgsmildixNSdPlZRT+hXyITpK29ksmRHyFStNZXXTT9jTC+OxYpez/wZIfLxGH0J5wI5ffRBwl75mUO9qKdCZTXmtJaTTJ2H+TQLLoF8YSDNXgUdpG+mlsQts1VnDraKZk7by8/YRMUkvDt4SpFRieHYp8injiMd2+ANqhqSCJny09q//5qmX+5od9TtGBmyHFnUcO0RU0+rkEgQGK6Tm3rSlpDOqU1URQmwlyk6Xtr9vmlWyF9h4HgBjoICinWwV9Yp8gKC3BcveNW+M2INxs5/i1bFQT1ZsOKQpDUV2PMl0iz44nJ5e0Od316krx+hnEcCqLwiQRZork22dHEj7VVKs0SMovAkbXR3VlmLOg99hHIrNs0mRroVhczYBYPgXJszk8kEkXshEUWiRcxVSIv0dCyvxPjixs/gynood/UVv03x8JXO4M0pVdwAArWwEITk3WpYevZomquByl9NMkV28qJcJM36AmopVcFfOUexGmXcCf/7STvRjB94Q+s01nkCl1XHWn2KZwBpIlwXX6MIDN6OMxebypfEkDxJ59U4thEgltYOPLhEKI/7cH+plP1iiUrTdmc4yw1DhktoPTvAyBJzzP+f0GiSk6kF8aNgelHqbgnSQaUXzqaSgiF2HPW0ipblKxmYiTeO5GaVStp21MXmbDr0N66JIXupwEe7Kg6I43MO71/2IxNu1z3VhWN8OcQTm4HMYEq7+LJoKnwZ6mKtYviwE9RF3kqsKpg4zfTXVyZ+xeY1Vi20QMyrD2dpCzTUCEftR8TB/WaQKRtjag2faHPZGRamfPDKNVZ4LCAaDD9CMKQFar/ki6DY0pFDqP6AONRM9N5Et/3QrfQRdL+kUA5OFPd1M9p5AKdgPJ3E02sVgWhZKOKpB2P1ZwANurXpK2CVgqAKDxsV6cCow8qLMcDJCPQJEOf5cps/POS+aDQW4Yj7XToWssSaG31pcWRgNVxJdXIZzUsm/A+omB/BcNbkj7IHg0lvt/c8KXEqCLOs7mu051dfzT6HQ8Bfv01tqQkgyzm61UwOSojPXca53wP9CV+TsgXDBL4ACtAtZXmY5C30JVVq2tT0M4iu+XKydNgZQwzXERS64rCku2nEoDYaPIhlXr9LcUnKxS5sLOoTylqKIHVyrMqMbyJyjck2faHJDDop1Ir5Ob6nSAVLBKiw6T9Oa+khzsKNpMNlEQ4+0L1AmW+OTwhxbVny6CDId/BBxHRIiwodO91VdBTj100kWut+4ooh4RPax0hqKJvW2H67pCcB4RDFLSrC0dbZps13cRq//tSlzq4FPbXnKih+bom/gJ00sB39HfMf20vzLX9xfJvkzmRogFsdGbo9+Eozym1Og9zDwV8z9kbfXO5RZOz7t1khnJ6UKmLmsxEVEtSEgfxILTX00Uh0ZqYpH4AphCP9s0FuTcwGFqekJKfnNTMEYm6vKuywq+myTnBn6KwrZUTj/janudyNc4dCAiN+tW3B+featg1IKuVj6zIYv25uU2+tLTugact/SBqKj2Gc+jM2rA4/xvkLYdhTLq0P2V6pD4t4XFQIeoK3LEmQJHtlhR/nT4GRS0+GYvHY5uFxGkjY+tb7x3SJv7poOOQFr5bnp0NO//C9kZLRr9freDjLO0MstzYEVPFGSccxnSKeFtVV+KqI8gu2kN2qhRCeWL+S/R9mv+6F+qUkDI21D1X6qmFY5dFD3TxWesFQKXtNLdoA4zh1ceNXlmpkfbCVgxj65JGBN5/pOSculgFo/K6E4KHiPIYzNWHQBM3UuagjUtdkTwQxu69beKsuWNbhxUvzowjDIjvt51k5yktRmS+QKokpZDli0vXK9vRq9OSN9YJOL1owWSH2sFRoXGREqAiMPRFy0pXpDR5Ve0exHS8t8gi9erF3F4f6RYPG/P34dZ2h1YOfbC5iL3Tqh51vzgzmMoQeLPQ5TIXZ/B4+TNOLgnoqtKchrnXGh86UoV0l+ek5ChXdHsWmRW0v/Au1fC2Zb5kYsiH9MPy+nGNyfKDP61PIRawkH2KbvF8Gl4ssJTdP1Nf8B7gcZw8ESkhKWTPg3AF3WAVKspE2RVsB+2o6lOLZaYydQ+/EBHPfn3Rp1l9t7X/jOWOz64SfqctPsOdJIQta3i5ruCq5P/cDmAQx7lBovvphwcnIgS+D4LdL96r6rpsAnVgAAeE0jZ+OF639MO0QZczUkQo1sYFkS2tlzZZNWZHViBbrTTF4GleoH/610TC7uJaVNhsM3Tiq3iDdRAD8OxEBKiZTSlnAez4oxbAoxrjyAJ3XWRh4tqxN4eYrA8u/Ad0FFljCq6OtCiit6t/Bf1wo4xV9ZFSCT/+CT+XNxR32xXydfqqFBqUUDI/9GfJa4PedvQeqVruHrJrql4UC+Xn9A170vbOD05qA9D+yPatO5FG60Xk/KGBzYkj2n6hzTju42aH1CXZdLMeIGxAFcGX0Z/NLM5doviz+dZXgsEmUTCRVmu6PgHF4Z+kE1cfZerA8EHM0bL9EyZ0s5/51nLCPsMRATefD01D8IrhsL4Yw0pgBLifPEWyhqtTg2/fizdluHOtrmTpYOanYPj7cRhdO0uvAa57FpNVRA7IzsKDbJPHoLsLCTMzzBFTIszYc1e0bHWpnEMKV7ww5DN6AdTV0TvANXL00UimHNogZsLDU8nmemRKTIhzPbJlqdXt3b4LQ9mIf5R3Zerf8AtvWtNn7iRB1TsNBpoiAYprm+hTH2m5eZftWbA01l3BaJwzDkqK7XWu+80qoo3IAfOuIMZy4xsBck88dFhjafWWnc5GpV0IUs/8tI5orWDjewK6/ar+YSsV9tjWTyRDZbqpBhZTgsFgeUe01Z1+kXVRHWKKiN8+Oc9RwRLfR9u6ObyvF94V5XLVzdhqSACwBA0jNcaOEItxWsT5wuDQGeiZzlHb019ksOhydZHsoBTSw1vDFhBmKdsduTNxPdWduluWzLtmutpX9fMek3L6kLsuYK232/vXUU2x3pj4ODW6JcNAGl0qVrIiIPnH9ARawy9Hac9HqTr0ouRhBgyQm7Ip6YaeiO5q6NNTc+uNFWF/PI4b8fskl29zrnWLFs75RJTuksTY8W5J+3VC92mERhnSA5DHw4qqDcZb1XsXUVq0FffDAc4doXyBPP8Wnw8KWSpLKNY3ybOQ+AGZNA2eAsE1oOSOfOcHvks+HEHUazXdAyxA9F+Obd8AlJrCPdLymyEAoFe5SBX8zwuW0dRjRpOIfJypVFnvyiZXVnr61Fipy8PprdOa2AA46gl5W/AwsYPG37SiXlDQ3yJIVrTcoDleWau+z88Sl24KXIcjKyMCGHjt/7auHHHmpr+Q4RPULC3juw7LG9QuRl0fv2eDHuggd9aAXhENlB6iCnR2LWWdWPI2rlFks4UhYwKt0M++/ohiO5yT9ykLIafQ6GHHtmuUuwp1N7YqjglCa7NJrwt1c7XwvWsI71m08ZIr4wMspb9FWdeqV9Wu4ANJWONDvUdOgfFVDpjQ3MfOm0WrGkKWOc222D56mH8upokAxkjUCKqbk6+YsHi+PPGSpj3heg35997W5nDbBxiGcGpc/BH/9Uk0Fm4I6LLX6ngNMot+sIUHNBf/G0y9VYc25Ii12ki8fjcPqncj+bb8YHwbBfTExvpSZEh7KlI7SA620DMglKw7Ty79ELzmKxL8uDFKaRUnt9sOmuwXEShuOdojssaP97tD74t2I3DeE5B3i4PaWLfblYEjZoGuQ241BZHnCvbY7RxXOoaS14ZM7HDqRJhJpNpbKDZXzx8XyBXXB8Vu7oOJw9jM+rK4xWluZZEblcJljsSPxYMgkglAl2aZNIwGeidpLh7eZgB/fzRtXCYfBSAMznpjsoHKTUdNxBmz6TVqO22QK5CDG9XFynzttA+2NOjKnOSpaKuaaDUdo+H605z+i1vt2FtBhdu6LzgrZr5vZsk8wYExL2MSxtW5OpZjAtO1Qub6gwKReqTJDX3x8KoX/OpNh50OVcDHCxbavMKpCyNM+r2KTWGhaT2WJg7ipWoS/J3Y8MkFBdJ0iXpA6677mkx3AuFqgfVlcuzDONXgieWnvYH0rdJAgVC4aZsLsPm10R8XmP0dSIrwWT8XlvJ7PyISUgjbv1W3uWt+5Zl4V2rqWWHRupqozz8XoMzLH+MKLehO6pKituCmIVFV1OTjvEK/gYvIrFI1IYyrZicw6eoW+N4NbGqs0X9tcVp12iskeQG8FbzoQQTpIWU7/e6v2tNkxB/o35Ctd0pTynwiVWNIZzF1RV6fumnYBvRZBOP1t708hgdrRz2ZyBCtGhEjl352cgptI25DCc15GKA5eA1yOpcCrI88k5p1i47tkmj4aKkqAIrfPduwReCfPZBD416JqwPmWfT5NN2SsyEeFnCx3+1MxiBsBDiz9M1ggGmPzGfHx65GBZTUKOD7NMkQinvDac266y47NEa3mJmwRp2EALCj5ZEn2boOh00M1wT9XcqNPFzmyoG7fyg31wAoMwZbqxuB+QMLLbM9HQ196e/u1vAiPUwJvDs93SgEP7zQ/VYZvAIwGfku7bF74pwZpHGzZZaf8viBMCP/DcY5UKPxf59L+PZ74H32wsKMJL2vx41Y0lKyRJOSnbU9eI0p8Shxkmwc89V729OSt9K2Yan6HnLX3fu+FlM946nOQqbTqr4WVuWOmbqeIsxlmGZp2GXuuEPPbkSp/n20X9VrXKHybogH1sXxkfuzzqmlhNl/bhNIJfe8Topb/KYzPDYD30A++YAHi0sSDv0A7IxIW0A43izcOIlqfUGopYl4249pO3YzFyXtoXdbDudGSJnR7GM6LszJROuSlClld09MbfGYXcGvS3DI06ld0K8fJmF9NFL1h6IN9l7g4eHnatNfnYfi9bWH8T259z5dXp9VAW4CjvCXtD4p9M2Fj6lsZJ7x3Y+iCmMw++cKuk2X7ZWp+Cg2/t+P/ievxU/k8zax41ZHyZ61f8O4frOJUlERHFZuy3c+UBKHE2/ubnYeivSwIfg5/CzvMYsEnYJGeR5vRCe7+69rCEz+3r4fHPVr4YH/myTqmrdzTrfJdM8ozMEntQwznyJW66ocJ9raAORq4eHoLCoPLVz40ZTeD37FKsqrEspBoP3tWux9d252OiDbOYhhXAnrrJAuc7XP7gkmgDJ7kC362F+S0Qgu7Bjuzq1y+59yIL78DO8/gQT2zRfeYBteizqtQlNFHTSj7268CLRna6HQVQsXRWUg2zdayksZ8l84YoNcNJPOGjZDtzeB1kaqkb96Zbq9RcUj56LH6prEDSF99YZpbN96U1szagaxu0hUuXQXkZujbrOSGPu3JdQ2Vh3y4Xf9GW6pZahC2KVeyEVvVwSYO1SSxxaLxO0AezrQ0lnFC4S2XSQjDXCcruir6aQvHLHkRzYDwLYBtp47RW0cgddi7iPFFP8mp97Qmfs0C/DcWTOgzr6J4PhZgPJ1noulNlC2zB0Dy4JiOxRr+qCaNNY1p2nyTB6cz00yyAFwkIZ5CkokXRiz1tJ0q9WWJK23vEurQkAElyzKUSVFQlczViChGbEqCh6WyHfjAfL8mL7/miuu7+ZG/yMR7OTrYhC1xv81n2BU5jYEJUh8CvpOhOdY9lTbe0V3wyk9GcPqqpXidr7Ln5tLEJ5kbcmBvCJtq4NE6IKX1vwbGv4Gdq1x9swrTE+fB0SbHJV5GmY69GthYxIyvEgjVp0JjKNOEJn/4lrMq4GZzdxYjBU17mRGx7Sobr3xQtKqEXJbbCWsNzmNdV3JHlgU4Ph3aZeVx4zUHZ6yK1EH4JbsXyN2NSrd27yaWTjxGnhmR6iAvq0mRst5LW+ptiLVUcnMzCVPBeGitxwu84GoxaiOZzLnBu7K4pKJWX+LWEeamt7OYp2IlpCblCo6tmE6i7C/DNtjD1Xntpj2yiog0MiAWgTFcxJ4vIiDbMmp5Kn82f8EuGsqHhIpRHp8EyDjb6TuNJtrwouCSkpPQAchQWGGelzjLYDv0TuSLKqnJ8owbZLnq3fn2pan+pMvmA05iC2vOSL8dFTxs9kkknN8VFZY15KJlzI9Sc4kUBdXWaDNGMMIHnvS8fmhRLhoa+5Hb6VRcdHQziUm4y1Y0m5hddw69eD9EYXW0GbmiE1j/JzbHXNqDs1DHkVLcXNfw6gwojEjI2o9433tnvq23ZFXtBwP5OGC4FEHVZLizAt063sbvR4smg+uLohc/c+PwShH5UrK1XaCJlYpdxAdf7ttgNDOMlKjdie6r20wJNIJAtzKayTST8gZXmenE84w5SMYw/0hVzLnMwTtrpo3qqvLjatoxjfkMatb7S5QuBVUEltipBU6m3IMVe7K50oFSPD3ECX6SFmNr2cR0yR8WM1yKm+t1v1lUP8az15y9ba719yJVdIRR2LYf+iSOU93LHjhcRxxzMrjY9NzRM657kZloidTkO6hCys4gWsGpXCPk8QZcxoN6aHAtV1bEEGxETiNgUPy3L4JgqceCJC2rXIxsQ8woOpggVFqgRcg82YmqAuMisjXgALsmGhhkoXE+6v/g5JfpTPktnzRy8Dn4SgIhGsFBsJJyu6Qi7XjLIJAQlX6EIPyNAX1O7bJD0DDCXKOhF+lI4o3dhr14YlFezJacRNFj4bLpunbKi9vBZc6W3Azk3BaMQSqmKbm3wIu7okxFHedjolhgvM62WWfzV6SZmd9EIMiqIODyTntGH3pdCChzo4k/FgnXZgRWV5KbeZ/AMe3JqKJOpO/KRPkocwk589QYriCkQN6nd4RMdBz9jjrlA1f3BTDT1Ae4mBchhV6h4RPzThwq728HKAB4Oc6/IBq0w65WcjYgvpj3ik92023Sex7A2h4LI7Hjd2vHtOgJ7qjzKoOheQoW6PC1Cxi1ceSISWy19mbka6n8BJTXpZXKLqzbJhlhQgP+amN7P0vSKMxS+UKpK6FCqc62qOSXqPFebBkQGB+4ZO7YXNrc/fNjeGmBlhfd6BfoSBPQot+RM2cnrccf8zLnOVn78hgY+ulWlslbXZpnp08huZEjYcYb2raoMgBjKprJMBGyFaqAa5PoMNWbBih8VvFkEiIhKCdCAu6Puktx4SV7sxC81iz5ZVEXsKK1n8T6gQ4aXp4DPjUfFw6PE6h4SOpicym4KWMPPgsmdVSskg/mUtmadtKb93ENrc4gb90KPF7aEIvdW6e6Et9zw2+9njraXFg8MHrsBtBHMb4Vex7IZNSLRDg9IQtRFfeTGEbpHQSn610ZPnqST8MDhAI0yb9g80n0uuuXnuwPfdG2Zg7EWCLaIp4Eu/+oQqp5O0juzuh/Vb/QTpBrWdN2Z2GoHxcgD+x7HqYesWxcRjeNjyb8TNqc2zTH63/Rh44KcEw/Ee2zkjvAby407+KyHoz5TwzQGW/rFpAmFyX85Sa9ui7UoKDJjVmL4sHa0QSHJkvE5Oe3msn+jQNnXHCvLjem2zby7+n5exLPlSpLPEp4qrSVZ4nctay9aRKMZHtWiidvkiSL1B7yxRKZluYzNiW/JCwrKfWVpnpx6iz3lwSjzIy/JOsXM4IsTL4eYNdz4n0fC9Br+4hty9/5w4o5qFya0HzsQuij3b1vmw0e8jEmqNVDdKPpM2h9032uXFjJ9oOjp3qit3zBMhsacNoutWqsFIiRgZEmNiBVZ3fWRT39LsFqvW+0hauOSp734/6BDFRXwyRc5soGy/GOsXFtYIefPTogUSpw5FToyK8tt/mooD+TQo0Ym4ocCthvxfDAmaIvB7qO1YHrt4ZZMymmMImw/2RhwZ+ftiIy3JOvvoC1J7v87//VXXqi+Kt+4gZX+8jt3YLOpopzysJkQzGlJKfrLfInNLB2Rpv2ZpeMDgQ1LvqzNbY2U1gjc2RP6Esmqt1quVco+nAPnJJBq4lc7XeY2XZK26e43D58unHFML3MzrBjEj3B8/NfDX+yLLo1rcAq8J4Dp4OfOkPBmxAcIr60MRSWyar1+hTK14RNEU+zdSQe/sNXfbQO35QrjPOoBofWfi+AVP1jACBTQ0lCPGRKOuPMswulhZ/DPoPi3k2mfLFys+gv1VdwRJUUW/VC1v2GfSoQmXRSTP4oLg0ZXE+/M4bnPQxX/sskiHordhOuf5z7/8hE5qreBG/JSqCxHE+j/Cpt5JYG4l0KKl106A24Jxxa+dRwgBJXxVeZIogqM8NHK0Hg83KOqsEQLPBYFs5gPDtu9u1boThFzFS417tUCwuE33EJPRqYr+IGPhDflfr9JkYIeOukehVbNAJj6aZRHDVjAKoDfnu/anGiSHKwpWAYZj3/lLOw6kgTKZ9ENOxrkriZw3jdsD5GCkWe8ROYyC68UHi5uY1zZRaay7tlS4IUjFflBxwyczfSFNUWMvcxtsS+iwas1e6cgS55stql4BS5/Io0NpfCIPxD/Otx+k3KzJb3IMmMgXHUfv2fN8Snsij3qRZYYGU+AZ1JXYRRwC2Qxo7z7Ud3D4TIf3ACltOwKNK3479S64+Bd6OukBMSxQb2ntGxnYZFucYNS4VdhlSTI8NN48OOLrkRrpbUFU6oOx1JVsobSULqTsB/p07gtCPfJXAY3Qmjp45J6+XxDzxaOMu4gjYAsokltq5ri8gr8N5T21kF3jCoPGTWlm/cUGbzvKtxExH7M1BZ75mQ+pz4/r6KjnqCW1WtCLcEm5UmkT43YQgaThnKYtTnWPjZx0idmgq1SVkwPA4tCjH80NfDbCJ020lhGDxwMTb2q1yg2z+jk0klddGiKbCPKd8TBFV/BJx2v5RCcqemcwreg9dfr0JWZFvWFluIRofT1XdmHWlwfzl9dPRhzySFdy37YkP7f/4N7oAhf98PVGJeU7G0qrYKXqP719OLs9tK672aehpWW440zNSENrvRDluiA1ZCInMVB8vXD87KTNOpEZXDTVOkWbuINz6S2Sm4Xfj3nvikqFEP2X/MREoquaQKmUTwqC8wAv+H543eOw97asHD21oCjLALQJKvgT2ETawjpGfJ0daJ1y1E3p7VlX96qqv51rGWvTNePqRmgeCL94nGXjigfPRJqn3mQXlZDEP/XecOb/oXBS0pOwgKizYicF7GrR0Ybd7dGwsqe1NC/cvu8i0n9qd/Lk0XrxSqrGgU9V4oA4NWY9CwAGr6FOttlGYPdcgsF2JyPuDRPm6Ks+dRmaA7JSAPbdJp9P4lQP7RWEJTGdEGnXnN/EybgdvMezgs7usH1xP8PVAAKYRZ5u8+Pevmd/Vc6wW5IoZCoznVTS68KkK4RkUjjb3Y0wG3+lHKHBSc8hD2ClRCb5Xy7e44GxXwzDZXG9eo6Y6zQw3IlwTPa8Q3j1hweJvJlNKF/gcJylDQ1JqmM2uGKlRPGrg70nIohbeDgPUWmomcCUBFi6GZt1Xkrxtfak+eX+iFX67yULs6mwAxgx8w2DwAZozbyFBYHng9+InKzZClHDitfUQBIYfYthR0PUayWhhxg/o6FtnT27RbE3l//I0/hkTtNWZ01hIrg4j7Opx1UZWnJGJYeY39IJe9O2tOx8nJGBq9iDKVsK2EuFKiI4R+NZaiJSkNyba8OX5ZB1tgrBk793XzID8wULWzaRJJxDlJ2duDj6QIb0bevagfGeyRm48ndAu3Y3s+PhUL/qsK8khnxdD899g8Mi/fJ08w/WiIdrCxJNaRG1AjsAgMJhsMxGMg+fhRarmla6fTUTo3vMeH0ta87XJuB8M6cplCyrsMpbJVdYh/tyQ1Zj/mAd835vxuhKy52PaOW+L/ueMGOdn/CofdBZID18npvqJ/YQ+sSnjzVFUXODLqo83yl3qqI/PLwKLhz5Be/GAkvdWS9bCmIuS/y+9JY5iT4s+xJuMWzgUCeJAte7msbI+5X8PxPRS+Cd8RVvTsZuCPB9QkVXc/1tB64p6g/bem8DJAlPlTPiYbyiS6yF3yU2LU7DRzny8FCMYmnXFHVUVP+B/aFmmBBWTvXDoJqd5VkHYsZskkubbmfiuhgk1+gNGorN+Q/nYcvSd0e7nxitnJfs4zYTMkzd2CtI5fLTn/VaBjMOOji6UnCXVKDNJV7VigjXLuvvGF/vkG/X9e9L3RgJ3b5Jjb1n7ZcjSx1q3/wjum/zaG+mO30VoOD18xuLcE7mHtEM/SOnPx8dIehzIYaUPYeGHQswtk+7vQOEtFBzlW9ZniykAG5sSlk3fubGA4m9mi5hyXsinNtqXSJyYdC5q0p/L7PhrWEK0AeI5v58dznmHu+6tV0q0+CbLfqDBBvOPXxvc8+ngCLGMUt1RWDRv4RUKrD+DrKi+8c6nrxH7wodLG6zHOye086Gq82WfeugSe3XjXEC4wpQ5Bl12EJUqk9X6yGlnw9ANqJoEat6cpyRbH+0px02BVlnunERa8MNN/UlBYf2l2uF9nS9X4FcykFhlhE6Yvco+L8UUEq325Llit2HBdOFIBHN7Krn3YP3DL3L6Gr05kG1UikYTwzLm/cVM/BLBtUb6XGdFhVZCqW767o3M/XFx+oaj7rOy8e8dS2NhLU3Vd6ua31WvkP25NGJkfyz50qt5AbeOVNH2WFlECGEpaU9LaSnl1UdchAJzWW03GXcgBeEl7aID/3hiZQ/P98KChGiLKKGAeC0qp6jVXYO/LhA//Xv99kWERV1j291Pm6ZEjzd8grAXFL3jn+gyvLKGezy4prgtlK4xH1iToqGkgTpmVPp1umZzFu5nkQjfGAZdC2ehSRUc4uPzzNAAjmQAgQkQZ+457/ZTlWFkytgCQrWgHaPLXGQ35oSibo7HnC3ieNRN8fG/zi9QiF095dLLwbUyrFVClvJJTN+7Av0CWgaS8xGJ/86DTwnGEgqF7yF+96BbZG9sz8QyH/iEuTPyafP/xzAtJwumn07OQrAHX7yKUVW9Kpv20XbjrEjt493op/8qf2jU/+6ii7bTlkKSPUvxC8dPtKGeFqSyVi5NWfWmbeAIj8Iw82t/nsfTj/xevcfpKvxPq3DZ8HCfPzPue/dmLMnb2KSq28WGk7VW0o236gqNSHqQ5WZ8hCJzTWcWpilbk+XuHeL7Z0EoHkftq2IUqSc6U2vR5cgz7bXDvIzKmpW4OJuLtgPmrVH+PcwaopGunlBRsFN5RV9edPd5X65uRUuu7V91CTji/fHdqdR3CCZ6KcsQRJaudKSSrqYk6ZLpzE4IK0VcDHS/doAiUWWm+aMG6wVMyZfdfJr9Q1SEtDGt5Lkm3OwFE/Q5PBIydY5Rsf1gQZ48UDTPBTFzcehn7t3NpWdVJMq1kUEzxu8wV1Y90lS/bWUZ2OvOUzaMF0FQozOTG/jxI6TJeq53UIpvFUCAWICFpIpmXWM9HfIDTvcUJKSWDx5Iw2v4y/7obo0wokplG68vVfHHEPkJqSNdiXkxrCMz0rtLykq1zWfIIuZ4108Hn0w62d+1m02mW9zqY9ec98hi7PWl0thDNtS8m1u1T8igUca401XsCJOHDtUiDG5eTTDAcedvvHnwz0tq9tVHZ1I9FUfRB9C5QsmG8UlvX4eVECmzNl1GGMz1xz4m3VRHS00fbVlZBliM/iQbC1OHOvMm9L/J64mAdfohXPK7h40aM5bvwYXI8DMqJPsp0u2/naUDERtlxX1HSGU9EnxMQGeDF/nwpv6JpJhdIgiKNvunNfZLe1UCic8ja8fclrvo9XKFe5I8kKRauHUodzNLdJo1aVuO715XsWNb7mbFh/hLzkQV72Znr8r2kmp4sUlzI33TBVmpbOyfrCW3uHQ6jnyAJAqxqP+QNxlSfTzKwYFdP7Xdc8aDlok12csEqTG4nvXDV2YzbaTfx9Q6US9p4+2xXlfL/D1zsGNrk/3WV53ltbssOeSbv4ZPGn3Sl7l8DMHTLcbKwQO7bRCVDov5F9znhjSWT5LO/fyWlZ7KCsFkz1KJjsMYpFQSXeewSFfx/zcK5d/8isWZN44UbYhjzu7Mz57gVga+XsZ1eMhVs2aYx93wwPvR5Um/d+NNSQvGKwg08fH9wdNLdC3hIkKPhzlVFzMBmfdwySylCKqhX1n2U9ehjkQ89txsN/CtiS4Xshhy/iu9NkbM3+QsNiIcG29nFT0AtzatcIAN6FsTkhb43RWjQyg4t2z4v2gQ1W3f725L+XDeoCVYGhsEKvkqsA0tT5zUjzhAv0Wgp8KeaiOE93s53zWKreEsd85wKxDeCh78VCKNEeZhu7nfIS20alABRqPEdU+o1SELvH0n/ZfQCIuic2framHgDZKRH53fKKT8/8PU78ajyHz348XHrb5cqBze8J99+o+3QLiYwl0b2ZTbC/4AMgqV7rdiVYMMzmzul2HtE5zKP2C6PJtr7/Hnhs8WVEl+RectaIzoxXKfRvH2+P7XrMK9lEZRs2LGNwM0R1fEI+iqnTBqhWG5mUj5nd2fb+m+lF7YYi9XZTjqjNLIg18WI8us2rEfvaTUHCUhu/v5dUmyGQuj3p8sqaMr2vJ8W8Jh4n5oaYpRMrdhrQc56vaDpsUumPyql5tlF5VtXFd+XbcIs33ZqryUuenq3+tnZoTfEDQGZdR6HZWJ7DkMILTZdjEdZLv/Zwmlj4ZqX33Q+W59kbDl5nCkrfvvdpUHWO7LtSbL1V4HDvwj9RShJgFz1f8OrtlzR4REljd8gqN/efZsfn1NJoAEaPEmv9nD+MjaSQohJ/FK7kB1hVtwuUeZ89fMddHh1tWlYblrRa48IuuelFw9q2cQgTClxnX7TKTJryCgsznZWzX/WIlfEkCA7tH2medBjymO8ZHJC86o46BtEwP8oeYNCpjc1M3vZn/m0MUVRe5hbROGsZnEhlZVIKVATATKbMBAubZlLaqCkKae58a0222d+UFkSH9k2QoKieI76SxaJl3MHnmxruNlPL647SzMASfH69/yxlv+ILPva3Dg4lhr9cCSt678Tg+PRdpTYeVSK2WRJ4goYLDdtcHfy1HfHEmHgF2REbEfNHROFrBk8KOunpOkc6SQvYSDH7G2cllZynXRIpaEMZZR0hXMm26dB7/iAlzkRQwaCVb0IUFNg40zFF47ewM+cdCe21hMktOjopzeS6hFrrC/XOqLbnPVcdyamVyJylwlpNnF33AH/3OZb7/fzkJQ/3kvE9LbnlQL18MsNORcT0roLdIi9IefxjHxSHoxfODUOQq7WIvBrUatZ1AsEn8E4mXpuNJj9kkNrlB2hxdR17lFOQhrwRwwWE7Lyfr43Sw1VOCwV+zds5uJwVFkWjcOtzU//k4zpaTDjTf90HAw2mJxic2lyUEpYDcQwStim0eR1VJwt5oq4cxCc+P60t1YRyAzjOpCJDC6rYwNno8Rl9dWHHQauFW3xaWry+vJFKMbYgw3uxrsqAbmqbzEfX9+npc2T87dqMrWv/3zkn3ku0owBQ4z/7ME1aiPvPZX+86Tlht/XPJJTQh9G1e+mqS8/s7Y2OdH11/BrReMdM3LR9dXGEulfnhB8SDyHNMy1mm0tRGj3xChWwy9ybNKqeXvuBst1bNMUyZThm5DGhHQAKZH79cokyC9rLj8WjTIAas0Tjbl0pQ9VgYjO+yU9ishPlBjnv71SFl71AgfarP1q3UFnRZbr3UjFS4ILgKBMov4uewnacGn3qyv9XwolAAMf+jiS8mzRXJtj/UwO09v93rHdjITDnDHh3N8BD+evZ9VNAf5a3f/DOsdJntqTompk0iTifHDwlGfig5lHdkbzWbuLbqZBiFstnewp6BokHPrMCOzLEDtDU60LaBWoIretEkVPIJsDf8HdPJ0e40AqUGYi8od5OvRRAVPX5boa54g4goT9WIOCDSLfPrzVL0N50a98BZFUd3CyxwQrihFJLEepzXgABT2b8W5iTVhqFJZZGPzJdfMOBmM79DJ7LYC3oeUC+cedwc+69/3zF98obolvzGsJtLfylFZCRSaLr4PiBuQdHUfjYeC+Wq4cPnzRTzVeE4/fNseCbw0QZapZ49UIECuAp+lzsNQjJMiJQDEVeIr1bQ3JkwPca5+Q9eL7ZLbhaJ85Dwpl7ssvpKAptD7EUvshxQnERvQlTXEVDjL1uoZ2RzRlvEnXZnWFB9LDyBoR29RxSuGJDjJTIelpUBKQm+bus98Lg2hKZcAiXUrEBJ46rASmjsPiPyjDeRcAOMwv1BD6vfd0CcsOpVh41ecY+IHdo6iClX6BoAe+qxVQqp9xx6gnhfm7GIeQz/hBHHfOyQoNBpAQILQtezisee2C96B4z55R5FKa4FeB13Ijd3tDQjDAK8oPw0P/gpXkbNf64KSlKE1kfQgvfxLlI2tuytQI5580baLuNAUD6FwCAxSP38UGjuhARARwd4mfgnw0+C8DebwUAdz+x83QzPFyH+FfmvkP4sHe/CjAvx5ri0+k9ET3tAnEZ/skflPArEk6mTN2MU06GLB1+H5/HKOPiL6On/KssCN/EYOo+VJe5J/2qn2XZFbnBmcLlBnxRcWXnra9WGOVqOlgR6qshN5TA6E0Kegyb6sZ+NmuiYrqBOxmLnKag8sGbI4sSWp7LjJTu31K6Iaf7aeANaDLOkhBROn4w+l7CWbiiTDfN72n70ek7cpMqU3BrtNh/frxjTBy9lMFV2GoWz6QL7xk89LPvMWCLWJNuIhuLydZQyq/Lp082PceYgcvl9RJOZfwU67VTFvu5OV9VXsbf7xwVUa3n/v8wN8tBAABheW/5S/pRTH4TIAEAAMCnm+rP94l3ZJDZV/3ZfpbnuwFAZkKa4Jx4otkW+W+h/rzBYKEPK4EfNZqA7XQA9hX3by49jYSnnh/3HlPGIyzcTz1dQSh5HpG6WG+Qn/PFqswB0xdASiLlkO50+6hu5oRwfv7Kx1gMtUe05QeO4MMStO6HROLH47gPzJ+0wfBc/8dMK+6YaXMTbMfn+FL1QZSOUo4IphvUvh3U0WDZoV19fopt3A+Zw1XDqPKTgZV0QH428CzOpGf8OsP0FFcNQm7Zw+sN0mJGTnaWgn7yNNyKyKI4VxWMaIemepWahlLf2daXYU5bPVg+US4pBzyZcy6WaC4WLyNrxI6obmot0VDbxdLzXdv/wQIjRPhGo3U1Xs7IE5ZQd77RmTNSfBkdkrm66C79XOE31TVRjWo55SwTzzf1zHXd06vHupXqe700rpdBr7AeNS/Zz5XBDAp7zChnPfenlXelFR1MmKyaLar/tVTXQY3VumgtOc2MIv1oNsgaEZEZhimr4SG73k4Z+8nT/tI6k4FLn4h2VOFDb9GNyW8mkoJ9ilkEmnzqylmeIf2rVH/fLJvA6tdY/XGqKbRShpI9E20+YGt+h3JjA1rfMXB1h1KN58gwh6+GL8OlVIfNKK6Il/7PreZmkYGvnNE7EjbmOumQsSiJBoPrVm6H95Lhmpjhe1DP4a6hldr+FgTkKBmJWbvx2Bt9MX6xOCIrI6e9DBaziWCi3lQvRKV+bjzLAkesBP98R+dIjllgON5qWeAyfRu19kPjcRLE+eQT5/Ox6VbFqsc4FsaL0Z0bL6dIh6sczfDwH83pKs0grbVu/Skf45obtdoC9zBNf3N0DXZXGKnwUQqp6C+zL0Y52Ov4aLvqBo9bEUhJK79NbmOCS820IO8bM9UYeXmhEVtqYTeW9vYsGI4yPvIe+082bFGVRR5NFQaqOfe2/mSowMzj+M0oL+1nogG7adVmag4dmzMbj6UcEIP2/N4thqd0H5yXFxvEGJbHUjYzvzH6Csf1VcrRbW2NbPvqz7Z2yG2LLY3IQN3eEDvtsLbt2MhoQwoCFg/iVuyuceO+a0a1qF0Wf1p/LcZpU/8EYoqxSuiXhB9PtekByx9QnssvLxBxOWDzKVt1IcZQV75KoaU9Zbx8GTGZYzvzldwv4/buM/eUFVU64WKvBzn7pf3/ouighGWFIvNd+hrAFRCAbzOA6uEVyaNiA/YizJ+ZgAMF22Q5bxL0h+RM9keQA/qjdFNUicX74yyLrhLPHRoy/cRjLVKUeDz7BQshQCeStgZLCeVHKbNd9YvEFi0MCw+dWwSOSAJBAoUYGapkxE7r4dhhxluzpItVIKiiYRG9llyXEbeMtuujBOViDCySf8tIEhWR5S5jn8hSjkY+ttU1JJIRnISudDHcGrZNcHGl419tcEvODgH7IyNqkMa+QGqlcbVOXFCD8fWMR8hi1x2b011GNR0FRUmBTTtRBCLdZDeMrrwMrmYL2skW4sPtSa+hJwffdr9rht+t8BTqSo3n+J587vtzt9pprwN4DvlunDxP/UxuZe2vbrv++e676/aM9xd+Evf/00CECWVcSKWfhvw+X/fj+Xp/vr8/gAgT+jzWJ1fa2KeyfmxCTBmCERTDCZKiGZbjhSe1/l+yqumGadmO6/lBGMVJmuVFWdVN2/XDOM3Luu2v9+f7O87rfgBEmFDGhR+EUZykWV6UVd20UmljXdcP4zQv67Yf53U/7/cj8RM1/5HVs4A7oiQrqqYbpmU7rgcIhCKxRCqTK5QqtUar0xuMJrPFarM7nC63x+vzgxCMoBhOkBTNsBwPAILAECgMjkCi0BgsDk8gksgUKo3OYLLYHC6PHw56oUgskcrkCqVKrdHq9AajyWyx2uwOp8vN3cPTS7cevfr0GzBoyLARo8aAxk2YNGXaGjPV9pt5wwfp/ltzMODJcIJkMN267uRTcLPBce2ZYIDkmhIVgeEurssh33I67hMe3YwB/Um35c/j46v7So+7pqmx0QzD9EsuyqnrSoRWUyRVqHJrzcL11tv4JYH4+woqUrEyj2Eq7RhQaccIfclePoN/SSD+YQABCZicJ2CS7QQg2U4g9DX7GIh/uBD/WA3UkBoWzpNgCttJgMJ2EkKpv1eUfr6sYdefaEQpH1Os8Z0gGUwWxea49iAYICiGEySDyaLYHNdeCAYIiuEE6Ya3ZDBZFJvj2sdgsijO9aZady5fYL37PLLYL7xx79m8vYuP7oru3fKFeT7o5/Nw4e6WXJAEyWLxOs93t6+61Nhn0zAxpHQm26ZN8dudkHG3nfKjdK8ur8hAklgNbd/w6WsrVsqbnMxYmck4uTMv6lotvGlpul326qn91Uob12y+7uUr3uFwUXSnXN/c4ghk+TGo5FJa0DY7bnR41HE3fIoWOgaSIOVkqzY3QFIWSUk7jnFO9Hy3IEFK6dBAgpQHW74iGh+AqluO95s+TZZaz9m550Jfl9A8awatJ9VdYfqx/LT0eAdFTMiSKKQXJ3eq1d2+aroO3KvghPpak8G9ljSHBSmkjJVXjxIx7LLXp2qL1VjM1+bTdXrYl5NSS/VBxB7flL6wjxOySXvmuXdmXepauauZAiU0SGOpm41V+dkkdGZ3F5buGULGhCQXctOWbM/UIdSVvfyl46uMKti76I2iizFlTtv9XKwN9bVk+/agEDdLUTJkrXEcS/Pocs/e5OUnuT7cBcV+58aWPQ7UuQa8xc9ovnt9LY9Hqr19hBA7/obhjlX2eEx5bxJfSukIHRM4w2JQ6QgdE5JMcnK8VBe95ugtdOLqRJ2sM2usk0HV2cEz9/tANOG6l9/phulwuiy3h16QLBRV0w3T6bLcHnqFhaLphsk45srB/1VLLvdy7HLdfSdIBpNFsTn53hMa8YNsq3vV/9FNlK2+OOPfsNVeVzYAceodmXO2ohz8etxSe5kmRSiapGpKKeacHv75u2Cra9DX6r+km1tF4051seXLHj730vW0STCHpCCDUPMZOpONb9UV6b9zwVhv5pJCLgXgBAwaOR3QhyeJL//n9fW1egReh1Gj70tc7ggAAA==) format('woff2'); unicode-range: U+0900-097F, U+1CD0-1CF6, U+1CF8-1CF9, U+200C-200D, U+20A8, U+20B9, U+25CC, U+A830-A839, U+A8E0-A8FB; } /* latin-ext */ @font-face { font-family: 'Dekko'; font-style: normal; font-weight: 400; src: local('Dekko'), url(data:font/woff2;base64,d09GMgABAAAAADyEAA4AAAAAfiAAADwrAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoIqGyAcgRYGYACGMBEICoHFbIGnaAuFAgABNgIkA4oABCAFg3AHlVsbpGsl7NiL4nYgQaGTY41CYOMAAspGRkXNXJzQ2f9/S9BCxnjmDmZmCYcSF5XoZGTcKepkMlBQ5t2Uw8jHEh9heSxYFlhsaiqCzjfqxqw/7HJgFfSiCB9XJR6x2GW4rOzwTubPhv8mZ4A7rIhx5+H/9wf0+1y9EZlkJWr1SdMARUcQEf7/nSHYZgetKKCUZIrSYqCUgIKKilU1Y67VRf3C7Vety/paf+T2i1/F7xf5/3783B7qcXPw+xxTCR2ojURsNEiRkH1wXs4H2CZcJJIbu99IKSvFj+9MnY7j6x/zx8+AUIly9RUHAPl52lja2A7BEaJkFShLmUUB7do5hOeLkpCS9AD5n7x2N0Ca2JSjPzp/7DfrZeaW7Do6FKgDFR1RiYz4Hq8jVjHEawa01ASmyQ+y4qbTlBK4hUidtsofj0dwYNmrmmTXc3Jg1T3YlVnoBMTBcWAfBhgAhhH29zrL9suQyIfeQ2/4GKY/7gKERSU9S15JX1qQrCwfeXdiOLK8B14feX25s71wQBBmOwRQpQWumKdPB9xWKUoskzJViq5FLvv877Jmb/bnX2uZo/TtCuEzdJlzbt6fhJb8ay1LaaqNonSbRQ2owS0SB8LyeGkzAuFVajRiy9DrpU4FPjsl/ACL2JxhbfnaO/snpCf2Z56SxYpogI3MQe/qVeYprd1chAjKRyyLWbe1Uw7HDAFYpCgUjwLhZQKB2ZEvPH80DBw8PAJSgYIphVyoDET4SgY2DjGckqXIlC1briIlatRp0WaGITPNssC4RZZYbqWVVlltrfU22GSLHXbZZ9q0g4454aTTTjvrgksuu+oXv/nTLbfc8cAjL7z0Ph8D0dGqdPUrk8yC/NJoeZ6BhTCwQHbfMy4FoMEB8n8Vy6qToQnCm3N6aZuaTKNCy1lNpdX76/zCljoQrHJalAMOiuPAH+qO5wg4iYKFQAjo+RcV1wAsxUQXEsRR7wIJuUOgrx8fMBUavQYBU6bBK7B2j3EIoG/dLgJuhxMqr1GXVIDugX0NIdnqy3zY4VYOUwDOw+iD/20BFni+ZawBchtA/bYb+KEiClE9y4CBQAK8ynevo5kgKPsSUdKLkaTPgDELrbPHedc98MQr/46AQR/6kfnBWBvrYF2sj8VhCVgyVgQrVrpi9UaMWWSZNT60ua1tfwASamGcUoye0qTdzvnafY+99FnoaR2CnlYIyyRNlioDFliI2oH/Z7jHXZbM+UbOlDYf3J7SrfNS4JtF7ix8Z6E77c6CFLWIxPrmxNQl4KtLDzYeHOTHl2GDaSdc9xifp4JChTOIUqFKjYaAhlNR6kw4FKkpHGU8EfmowpbDlPvOfc05LAO3BMpyvtbCWQdvPaxJRBuQbMS2HcMWLNtw7MC0lcgeArtI7CO2V5BpgUIco3WEykE6R2koHRbqpHCnRTrL6Lwo55h8xeYCl6vifS/ONYl+kuGGFL9Jd12uO/LdlecvJR4p91SZJ0o91uCVev+o89KMQKAvoGjz0UDA0RsQ9AcMw4HGrPDBbONBsDBIJoIozR96AoCl0RhYfcspyc8QllI7JNXv2n3S7X9wmc86/avLf4R2y/Qnf1SbeFmp0WsYq5h9zeIb0b7jcEmMyxL8wO1HyX6R7ZYC9xS6r8gDlZ6p8lyTt5q90+K9meGNoUBhJLwwJ3yxKMjmBQ5zA4v5gbcg/EBAMq0OEDsDlOsArwIr7w7AOncAsND5wNgCQAWUfJSVDamOIWgQsDgs7sYC2WVJJJSwTfCL7USUZiREw7gNeisHGkogImiRQYU2qY8RYYcugLmCMc6LYAQHBDi4VCFFiygES0PfjnjdiQHmmXoUlSC4xvWCn40EAeYpKmSHxSnQtxJCT3zSrDxnQmgIxtOrmPB8iQoKkc+PyQ91hFvgOgovURQTEuIDg7pPkS48Xo0Pwgfi9fiIwni91OpUJ7uT1A4p3oyFm/tYLimSpOCQ9CS2T6SPDKvzIZN9wnyYbDNDoUnTh+PxKrzMn+mvCM9h+xjSsj1BcU6nyhJGIoSGenlVt9AIOJxGJmKxzIlWiGLxkRIJHEvSEgW4WEQal+ehoGUCmYQXEWgcdj++BCIRT2G3Mcmtfr0T0z/pQUx3ECm7Zc3WeGKWfMu24RvPDX+XGn+/pvANvCXy+yeY9Y5DWhMWA4h6OS1Tqo6TwfSx6e2kEanh4iUSVixby3m10RIyEMkSppjr6GC0AiUyU1GU4i6YGMKHyGij4X9v1XYyqsiE8llvzUUfuwDMOTb4ImNkBmdgQdgRm7tzC/R6DCC99Exlq6L6bGmpTqguoD0IYItM4cYtCdFtwgKeggC5oZdK8CfKhAmuJLw0TFtZbDghzqRC3MbOWToTmmIC5DCdqK9fwZQGcTI1BuVuTlHpHKYzcU06JL3RIX6CcZs6PosTVpc3Tpj1dbbsu/kjz/LMboudeGwOEzu5pH/UmoPKtJHiXrT4RMA9FQB9HUT+iakfKxvPmZQ2xLSQ6I0VAAxLrRExfD5jBxvlQSUBoijjDne7so2mZwFAReJ1o2OWsIUAks6/9xMtUhEh/yqShT97HjZrczPatcZ73dygspaD9j2zxlM6rBTDLPIDkCbsLTGkJroMlnbIuakCl30GdgoDuC5t7f8cKIfXz5Jfoqk8XweYMpmqE4QVNYP3G2C4qCUHfJ8QcXQzl9XOcXMdwQbGIO+X5sxxpWbiho8E5Pd4Bwib93kMyqnE1MKpdSnjgpGFo2MH16BciTMjcxBEasJoK9FwTi/1EdUFcBRoAoBBbxDTcNgyWJpf2k/KPuGTkGUptxCjPG8aOXoxnRlBZJewS+zKAElHp5h6CYkIdxMEYEHEYfZuJCMv0AQSrC47EuqZF4Xhlhd3oaXcB4hip7ba+bkJ4T4Hd3VBAJDHYH3ypD1Y6pNUtddBz4Gmoww028v3AcN+kjcMUMHGow9xOUhZRDOFXnsEsyMNhZDv3Br2DOOjGUBeNuTavIYRt4EyRzN31qQz7OaglnA6cN4dNM9OZLwXJGhuW2DqaE6GMyeXwR0phLQIu64ZZAUez4OCbScAKDJYyFw0TbxCzSzHX20YLa3yrAZsJQvax2HsEfHQPVmPBuaKMz2NFWkP7mn0t95ZR1jo7lTmTpq5jFewheyPg+ZShEDQaXTNamIckFMcjR1N5RJgmXVFpKfHL/JcL8xFHaXC1UvZ0MnCbunR7pGdB8C7yBynDqHhg2uYjnh47JE7YH7aBC7ZbfQH+EAAuaPoadbn2htoM5M2hLiUh6nBNwUAmIDkRyPFm+lHxO3/jCTaE8enCZpwiaKPpTsrnsjWeDbTvSmvzIJocESLXj0Ofw862SsQ8B8XB9lt+AV0IwcSQL1akTBd5vVn6lCfbLjwcAFwnvNNWewSP0qpkCE+yYMi/tKQ6ZZaoi780MNMOLFXxFsmtdz2/1yp0gU/9C0hWdbzlC0FsSqYS+VO3o3EMSCmH/+stWUznUmmNhxT3txBLShvtGuTz+B0ztSaywDMrxM22xi2LOEenJIBJRRLr0ovZL2N+oy2Eq2PMJ8VIiVaH2LFfpB6yxZRDKaeMScMgX3diLjjKPUXJgR6QdK8cZLOWEd2hw/WudBW/pWb4l5IhkCAgzgw6XdVixrwqFBsv1OC9CcrFgQgFR+9Ppqr8stqOXYMbjOzESpP6j66F0BeMeiTkPgsLFkR87WpLD3FngixhsxN64QFEAlbur8Fa7sYFcxj0JNazGQT1tDOpwI1NW/vlN5gRPa9RepOSZ1DX3YpxPCyxne4unbsoAOLiCFbFvf5GHjDfDCVb+6UOxx0xeq3OXZOEZcWerEWn/0SxDTVjxb70Xe5B/kboPNex2wh/cwNPv/SF78VTvVOdPF3RgdrUaY/LAIgb0LSyYlIT0DBWEfc7DqgYEopa807HndIMVnNlTelU1YgzoFQu9zSxAFyjhBMecx+A0s6hFyzgCQY4GahCVHLJ6UFiAkZdiZJFAV+JIBpLkjK5dWe12eeC7m4YOVcdzPGsuxvnq2c860+WV7HtPAhaOKFh5P7TRnVi2yD60KV0haQbZUSv2lKPNtwxcqDmKCNYz6asJJPlvJSCZtqQr4iJhQ0gAFJNFU28TQaaL1nUihHi9M/fii4cGpYdHmAd5hww9kuwIoQMZvN4hZoqazQdebBbLKZ6Rd61udj1UQYX7L3bI8A+vIRRAv9BKz+iPUghYsyE4R8JPEAvEQbd9nXmP0vmw9DeuZ9BJg72ZprqESjeCHOxVZS+LR50RzVBvjTwaXhYMkszQpED5oH+UtMGathklxAUouCG+VVKOUSbCDkFUlxOmhK/UyHl6ASirVjYYKF9eQdu5U9T5bkisybqonDhLDcLnNXHdNPUdFA+suF4vX1CWbZZ5uGU8ripBd7gwxNsTnDDeUpPJY66Vm1SqgqwyD+z0Yoq6l0HeloLCrW5rEMR3gAOWqIdr6ebQNk2nFxGoXAABVzSRdHQgsH9DQ1/RoLng02dwQpOUbtB8amTLY8Uj0+kvbCJey9gjI0rpNmfxV+BUQ4PyuO7Y5IOxB45nygvKkCseQpslutsR1MQfLnkjtmRXqjqz77kz0NWFkAT8soByi7CJ5ox4tdoKiSxdrNxLmWwTRVHUM/lI2tcNl3FJ/+IkVNGBvwMnCpO37r/HlHQrFJq7Jo6cAcphaNgzh7vhGgfV8JgIDhZbE1rgSn0sW8/Y3dIAPMSnnecGI2GFMfcpagvR2mAJrQ8T8fVGbRXtVc1m51daEfPxcYjxE4XQpqgAbniLAjvcYAaEV4IT3wjQYq6dUA+drutIrEI5xCoURj2Bp2V2Q93WgsCyMZa9C8dCPeOkbMqkL7Iqdu5nrReMnrNE2TZ6Ed5NB7sURGjidhDZNmd/3/g7ugsuS4YygkckGLRwaWD3jf6QSOIDLgiA8gRYvb+u6cPmdwzdNrRxg2Qv7ZULmABvAYJXV+kztnOOJQVVFolNxXWY1wt72iYxVvRafBzohMIQgKo5zMowykuGK+ZMKE6epqTFob8Ni6O2UEINolZFeiDw8RonuBS92RKW7ct3tGCi/7kzWG8OUIlmGrOfVGB5Td7DqAxNoCpCRomdA7Z2+SuOFgFzndtWqradYnlJzC1G8JzWBnqo3NtK9sG1GFKcwGBinVnJtJ77BZpx5oV+H/6AtjFc/HxohzNXcMn+eUH6zSOU8cqK0N1NTRWQ61hWkOvRZUMO05y87gHfFA9WmiIGLzYUFO+PsoAUG9/4OYvsPbxM8CsqA9MdtjLazHrqaC9O/P2WyZyxhNwMEuCxGfcLUkIwk2WEKp/iEps93xRNozzmwkKIqULcg1IixWPyGLbRm+mYOF8M4S5kiKTVnwdwmyPo8EFtRovZqxkH19fhQx75YixipJpUPXNDBFgrWm3GvJuW5zOhjEbPHM6IXIaCmyAa2u+rSc6zasIJ09hPvi3VirwEIV9FUlo0xQ2xUaar4xFXr7NQflBShpwiJmK4Ttx+5QP8phHqdZFNn7FZocmOhQ3bPZqnXAmJijPPlsXrMk/e+l4eW1UI/DZUp1RTvQ8aV1+r6QufvbfdQ1wwSAbVB2xfZbLL+/pjNcGvPlL7pKsMSJ+vwZmep38MHpti/fKY0bPkIiw9ixFeUvhoni0lEyAyM6l5HiW+L2G8hRThSHmzloUfgKGyLPrZ/dPNQN++j6B69je3Hp3qWF/fqCZaLsWFG5Aw1uV7tRJQ284VyoWedfMtViqB6JVaEHRPfLGFfmYews/HoNlt73KqmJdPg79bzCJp1BnxblnOLvhFOXwr09yB5PbVuMV1J0Z5fz9XVd9oPZYJSDMStZsaC0kOI90SF3xfnY08NpNNiNDirYbezYNRWFBcAfRju/NnwhNi4Hp5MllpFFUfr6XGRqa+XNxjVc32Afr59BZDTSKEaYiryR9to+1TRfV1SaFRxE+VDifVxgu0L+4C9XOMNMXEQuKBPk2Hhu1ztp54e7QS1tHTQxNZkffMxRwsTInkpG7LY9ZtbmZhyFgtN1ddPO1HBRzF+XQVM+OIYdEuRGB7UIeyx/eCLVuWGyiWN/S8H+ZtyYe1B+EGC+esrHiy+yAGKaDwJekmj0Zxu9SUGSFUYq76fjjA6HD/TaWVcL777qdyd1vvj0uBEj9jTnupSvRKQSpC6zXeqbP7XRujWV36cu9PV8t9GQm/NWU8hRPOckpNNTyee5mALlO+tvIJqyWF1RDJwDZgFJxy4RpJjX31sNJEYJSolZEqEwzfENfXRadX0KeMdoYSGjSZRPVqs34dSWmCPSGI7knFVX4XRpjzHnDXzAqoNazgy2yBhxc4XLSzTqzPdbbJ4thW9UpnD+uch6GvSdiU1S5xMsbygEkNS35NxUOL91zcz5EEUtKCZ8RfP7pjqoYO/MjJR5EzMo/bHdPdZY/KDRGdG3m6nHkDlvm7pMS7sGIGzFFdqjyIkBWpl85cMPv+fz6r3IdgZ6JjwH+wdHHprtpyP4/hOA3R2AOyS1JkI5LD340QOlobUfvDGILsh1hAbKwUN/nEL+5XcHnz2ZsXr8QlzxsoJKPve50F/XMzrceTHIM6uoXMZ8KLQe5gyftYZSthoyDNIctgwTJkhoELgbYksOXxF5RoSxLf/gXRyemk1xdOtbjLNB1ZIIyFPLKR4mDSPgBsXSyRZBHdUm9VeUvz5+guAUCZwRaVxnz7UMmv5n0bLAiRjtbBvspwJWYY7EPOGf1E1O6ovg11d/FQO1OxcyMyL6E7bLajGCamC7dT+Bk1ca5TZWhBiKjWlhTbEGk+wSIXV8WZJEvjQ726E/czZSyKcn3tJGKoQ27fk1DNIVHG4NIaDYdPZvUlyQGKgdhGr+osHRAlDNFoKYRLA8IBNzm/CXH1HGJg4wiR7IHiidCc2NmA+bDwuLltpCQnkcWtvPAWKBKge5CO0SBtlRiGR7K+QLSPbp5PlBaeYtbB/XSTpvacPk4Fv3bk29abbcM4zxrb/PlvaK7S+9XvNxJ6sjSLjEo2hD1kqlSGyhueHDmVAGk4GDOWRKq347lSYxZ+yOGgGhAc0iL1J6PReN3Iagjohu/O0gb6DYAvODzWlhNcacxsDBPcOTq39BVKxGlHgRXr1L84tiFXknUOGIVZRkwkxZl0tWewwfvMmr0ASf53VSvKCzPSwnZY7cStxpnLCSS4Dvl1u7t29sSU9dkZC/sprhb21gUDLL+RHkhKRQT+PktSRiVkbujMXWxJid5HSVDM2pCLTPyfhKmH8RewWdF3hU3Ay87nanOAwTM7gbz8mOHjoPZQ8Mtrz/MiYUzhUnYBv8wasw2lDuVefY6rbhefd+G60W1MH34TKrdySSZnAJpD4gIJ6lO3U4aZzE/zZSWs/CPCAgq0GBiOmgU5BA53FiGSKBI1Fw0eN44ZZEC4qNgP2BL4W+A4QSl39jkwklDvpXkIVwDiQTkitsg/EGtNgXZ0nHqiEFTHoR0mz5ErHnIKrM0hK2LljmRo1UID0ibRKcLFbY0YijWDMs1Id6Ar58mxZlFwj9bInLqM/BbogJhBXcz4vc1RJMlSGRB7VH3/AhG1VOV5YahZThzDgmmF/6nu8mAMWPm6tY5HefGBqiGFfHQA1g3oYv8coDR+FyXibir6P0b9kRRYp5l183XQ7wy/emwxrn2VRip5VbZPT1OpPGW6kKCAujAgN0+RV+bLQAYuZprXC3/pckAnGbOx01U268dz+Q1tQbcev+WPpiY2Z7YuRcCjJirWq0rLojacPqqkcVPZkbVrsrsnLZXFNYZ1oW5fFtbqgzkD1Np6C5QKc8V4qV0hJdAdApSCE/GTIbbN7L2hyEe5tFA18By+C/sGAXxBHgFAWxc8v8fSmQlf21WxE+ZtTzH4LmcWVG4EHUXBjphQngQ3AksL26z9WE/kjNbnmnw/78M2aeRJGC+P/CgnbYGygqAgH7sRQrobnjUiDtYDgLMgFSSvh8s1DQXVALhdVzG4RYVCWt+DUsHuqgOoVBzOwKuufG6Q/gl/8AzfOE+Jt7zLsmFlylu8uFtNlp/p8o1z4JAqXRrGRk0Bj+O69ZembFASncoLbcBL7pJBSOvwAvDgkkoWb4Atk3w0xL4Fgj5D/cbbEzGPxjluNOo8qRSt8MVA/KIpof72ynoj29DR5fpbEvNDlPWwa5Ad2xK0yZGRz5WAxHw4oFlrg5F/uG1c20dEekNJeF2FjS5znQIXbo9q9hkk7icAsIhHp2XnlUgqlg7l0Zka2xdml/xpA63RLmKtA7IWcQsNszIySpgSL6QIcEkg3JVVbS9c9neX0UpdPMjkiqMDoAO/Ai2k4D2kKFolQ/T9aVTFPXcQoJ5W8q72yaVTuXL1TAy8TwPu9KHT6UV1uNsqGGUJeoXIsgIDEYE29UEs05v2DqxD9oYzVZx4cPH2jwHpSwgqjmsdJUvx8DJTZt44yq++BAygCfwqr08nnQzQpEFmblJSHOYlEXyuvQdWdZ/qYWZnBG1ClIPuaMyQbbispF/bXOit4jjpZTFif7hbvh+EqYAmjAzx/KmgH4nLqhyaEwsD+jKNIpY2+OowVmgkKZPrRMaJqhlSR4G0xbc/G7RfDhavZP7gZ8nG7dltetn3xFb+QCRNirNQqvJnH/sglEFUdfk4r0e/mWkJLwWldvYpqJV/tdxGAbhBwRhViH2OluSocsM/MViySUCG+GH3SsAyb18ZXPVzGEFpE3JqfwL567F6bHEW5/scyWfT60+DpJvFOXg56DqGTgu2nF69Do1+tllLnzETdJQLDsagrIpnkp8jlZIukJhT8TloQcgy5KpQJoUSL56VGCTl/ml82YP11yjIxHoBw+Sd5tkBRM2ns288Yt7QVaD12ioEFMuEyG0r+5vmXiVl/cfgDbBzy/xeAtvBCuOyECRhbCUhHNLVyIDeKSkj8fIehCSvyy6fP2lx9n4PAYJSIQdksMqWLkBDIvvtCofFXeT2AJK98RzAK7dWhbe7swjW6yR1DJdrr3hV2ynZKYqsTQGXb/miHCdOExoNae/2FxNfns1Bz6g9UjIw8PzWYugP62hPZixhjsNWNfYc3JkZHUr5dXF9adzmk7MrO6/NrW4VwQZ5tfFWooiXLIi5+8XJChZtWPT43Rnq4ZGXl2aAFrPvS3lbTXM8ZGv2011P86ODztjuJSJWQCS6XCriYSFPzcDmMifcNdxv2+xp5pu5+cm9+QGElgqziIdIF4q78zVYUaio1JhsXYOu7BY5WfulXEy6UPHMt8sWpzkYj0bnr0Crb/2w3Y9KIds0ZaOgOD5EFQK9I1ZezbB5esn9w8dgNevRen86IFgWZUp3wHRVBPyfEqJ1zL2urD6F8gcobu19fVuDK6K3r1qyQkGLoA9enXLQwQL7kvZgY6ArEqI5aKivYu9b06WEheI9i57ZijxxDfm5viaB4q41XN4Z2YF4/Kec4T7QqjKtEgQe6ubKo1DTOjGD0cCyST/AgXHTG/Pwl32bTILbCk6iND5khLHN5YAgaYMF+mDRD9TVf9oK9qf4d2h0eMKLMcHPbqTHY8qZ27IrKuOWvWwMVvayot5VGh5YY4WqmU8TzYEqOzq2fZCuvCRWeyWcnENubi0OrWgvYVay/EOUA4Dl4qKM1l8GOVnUXZ2ZwCpis6hP6xHLNogUeYyqdvxSMD+NagfDMB04gu4f5Tbde69c0SsLyoYVuoZfNziHDTQuec4TbuSmgdsLfpEf0wZEuSpqE4QNJxOsgFkn0XyphZCwaPWQrtM4M9MULdzDM98+yH9EXMktaUvqqpLZk5jdXNOWpxOifgcpifxV8cWCC0uvSsiiSK1deJS6f9KQSLZJd5hZp/D97cC7sHuxfEaOo13L43nrbYlNGeGMQKQLfabuiLNBHJu1a3PK7oKtq42V3RV9UPzWXpzoteKUoLOiBucBM6EKAalAGpdPEpjrjwosbXiwCZEhbqqrAaxU/SeKtBuwG2xkt4QU6aW03E3X1chSlHQn5Q+Capger1gc9OEXU3HSGhU8OCJN9MVqF8h+NhSIZPS5++Fd58sU1Mzv3PBzNxjcApQt3mQU3GDcF3C8/8qTXZpXtCOTVRLFb+bgBCB9iPxXyuGRKvLrNX8QN3z6mBsX9TNrpCMsL99mD9d9gvJPi0NczrQFSx3sJ7aAuDTHwKy6pFUmBhhBx63VSk14AXukAFbCHMCr2hxBgjL3oMnTo8Pxk1iK3yV078VLYCAadKPBv2tXnoXL6bRxWTCWxuGSlPZM8PhE5fEf/gYxA4mdll1ln19iTF1dEp1bo6r+VsfRz67r/dA/wiLquCmkJpcWjY0l5OeeJ/lSQ+VVRPm/Sf7Z0a0Eysy4j4OeTXBs1P1OjAeAZJbaMGvMhLDy+oUFiDGTPjL4TSWX6O3U76RMA672SfXJ9Yp+FGRYX6WJR/7HKKw6+ctCrSqHq5Du8pbMHEUoiU90Qaz+yf4+30TQkGuh6dHllue76KNkAO42nJfi0sRepmfU3LzS3p+yL61fXW4ZgMPnmAjxrpm6AIMsdljc/qX3DSbXwT1mctNoCk+1LsAHfgEwjTWoTdXOp1O0wZJeuQWPS5sY35S+uPBRZKdMMo0I9SizQWtXKaFzA1RZWkQ8xQe5IbyfsslI37HJCEJI64Bm49l4XtSQP+3l1ds7DiELlWlC7w1zb7AuPV3zfLeUKrOVAiTghV5aiceZNN2Z5t1bUHqsZm+P2+vb9gQ3PBgTwJxu3Vh3LIInh8r6CLfpym3cr+GcGbCCPsWHdZmLR8XVPGVG6kq6BDZwQhiT/lc/LKohKMFXpDcVSftcLm7y6aSIqbl7Zp59bzxwtSYZXZlZ3MeGUidt7Fog2+QbSIsB7TxgBn45aynK/mIbOFBUT2ru9Pt4kTdefXMMi78bgFhNm/J5SKYhydinRHC9q0JbyiddAGiW3P6f5GC/IgUJo6Fxs5o2BrpTYzLP/CjNWi3riat1XJS7VN57rmxa+IKxov0O6kFMmuWt3tnLIjMZXCGIJVvgrv/zz8ZarsRPwaw2ONMFkfStZtnnsp8OV6KwXsXnaSTxjHQFQwSmrTIERT0G2J76tkcia0BLZ90blGafjho08e7lx++5eygjErsnTgZlFwg6jQMhNPmhkZ6Snq0Kt1vYavocn9MGcMpmgQAX+rITCB6/U1mQSpB81Ipe3dH/dgco5DyaGuw3GtXr9c810i4tvNv9zS75eR9xXiInivXvF3Xdp6cUMV9tKa+fa2aHuHk0+KofjNpictcHB1yUN5MctTimLLl4oHGV1f4IaB4OzZqiCrJxXCgjAq45jLxGARZCmmC7YDDHNmaohTfrhqeSNZNnXwyYV5NW8uLZkLzrI6ZPaIjk6XhB8WHdlZFhtaOJ4et7I4ydTZaLKDiCX8SaVmuYFNWofxK/PTsRENfE8jpeA3hqAjQvJNLMEBFSmwJ4IZmKG7zHEC7zcJoE28F6/Kw0YMFx9sajzftrUW9v34RPxSV+FEsYYZvTznF1bR8YgWkYuk8dmJ90OedC2JLJHGb+3XpShm25sXYauB7ur9ZchBnKipPVwsYxRbGK8KGlgbAD+yQOzULWoP2G4cbg3RcI39rwyX0lVpfp3IEphNuSPFVi9QTh+5/vsCz7tty3qLDg82nUr3/9XX6Z2PmyneVNVaLO6mFRl16i8FXvdKxmIJSdIT5Zm2wf+9uXy0KDdldvdRyKJFM9o6wLtLibze9oyW8HqtPYH/MypxisVEG/9EL0ed3h2Qk02hanjwBMRO5IpqeMdIQlqVQvlgH+W0lw0JLRZF8wVrFGZMM6Y+EpB+XJortSsMLF8UWTplhA3/vYIm3LWpfzVcsimWJVCj5sLtqC8izT4tmE4FEPB+mMK3ZSkTbW8ubKQnn106GMM+gEm6hhjTCP7RISrtuVNiun29C9FMlF92v4aIvrakQ2TX7XrpTv74Aegpp3OlsSoDi0kJkOw3Qa0HIS65ACFjT02dCUkRWLTDUtbcmWP8n8AmaCRku5MXEWb1bsaMRAP/UYgjkI+QMaf3ntV5+BbNEjF7zuhh/v9gH+S4nVcu40WEq73qfDDdVuD9Jh9TK8X7vs9jT+Jx6IXoK7XY4U/34/1kH5Xe4tzydLfxJjMxnp29rX2Vp5h47w8fpc4soNxbBk84X805cT8KAqokcgePRvibCDwwtNWNAxf++lokfmHl04sye0En+DHWwk8UUb154IfTvDxaN8uXfvSot8+YZz1UoI84daS+nMf5lucto//Uv+GqHL4jomFS5E3wM4LSmgKwo0+YVMnDNBsyYfxDQ/rHRLF4t3jSQEt/RU8T9EfqL/z4wqeh+obKGIcwV+S2eXstjYxSCx0Mea1RgIr2gcm8g9pS4kKcHiEvyS7WIyr9mX73mMdjMfIVCd4oJB5MwsInO9CjzFhWRJX/T0ZLslSmG9LlN6X5WgvKekO0u099RE0FfVBQN62g8tavmfxSCJRN7JIHC2Q1qtK0VzyIG+Jisru68tHRrLAVgYFGSAxs1Hu+jpXBnRDFDZFypaT45vqRUMWx1ZrrF4WoCNpnpYa7du2mtQKgbEa9giCYp+CRanyKd5QjUf2X2YEqoVmIgSUjB4e7krVVmjK3K68jSrLwi6MqKmQvbApy0PR8eta20FSBVfUuODi5gWMvh5T4pYIW8uFFdXfqdnXcPlXW0L69K+vOirlNN450V/jbw2eXx5nciyy5Q7kJrsWdOWbnYKx7Tj6IsTq01Z2x9VysM+248Mrpl7d2fbkyf0rS+J3FwQsQI4isEN2bDUQChy80a/Jo0o5IKf0IEz0T/oADJf9eSy4PRd2PmZlDidyRxa5jWYoG1sYc7hmKZy+cmLpfpjllyyxDaaC/cQ4qVkI0G5jWmpQugX7Rtcqag807GqHfz5uvivf+nBzrVetVbRMZmNJAVELq3K+QB9ioDIS4cldc5ZrWzp29K3nppPd0xGdA9eAGN+/ie2n8bsFpyjCLnI2jGXih3mf9X3MrBURBeCbf2FQ3alYn9xrzWRNzyQRm34FZGgrQs9bFVfupf8QhVOPgd622g+bhY+hqFyEW20JaqqyryW3u3XEmp9hcpglNUbkpxUHk3+QKBz9G3alKdQfKzSGFjFR8JXGGNCvDlT/RcybMATSmHbm1c80uLBKJf0x450GWJZSLd4CsG8YaRBRV+6pti3mZq+hsqzm2ZVm/MIuPhzeLY0kln1fj8fDDMV+YRMuRy/tDUhWz7E0fJWrAn69fqqjY0T8YjIEaEicVAe0W3Qz1PSSjVmFSJbMEhZBxNzSRSY0WyyapGhjIhnqK5gavtYZ5DDQIlc6XWfNyzfzGmjW0G5A9c1E20PMaJNIFP2Aj6dRQhZuI/gcNw8LK1G1hR78Oyq2sle2Bd3YjhQV8Sj4W6+v/ikQDkMFUnCwgBq6GSsF2h/D0W4KYHylSc262mRsQ7oTHVcS+OcqgPKwghnABsnYeyiYstPZzBWzoFcydz+Pu1Q+8eTN//DZdsdpnFxjxhczT6p11/F+JhFJfp2+pJpY56elw5XYV6zKo6M1+UHLgBxolVgiBMVAH+Ky7vhaHho2PSW6vtGrOj0ZdqqD8GLooWO8A9kWXQ2r7Y1u5PmtGRZGKCOzO16Yx0Bsp7CGu/4f0Jd9Z9LwAMZJQOBAJ8TTaXKrUXLnU2w2EFtyvsijyKEwLbrJaPdF6PqFP5zSQCAycW5dUYlYLU8J/asC/Tfv8JBGoEtn1o/QWsjtzpCZO3dVJZ2q7G9lztxOZlYE+AcE4uWjSqI+xpFTURW8GKVwYarY8IHw2k3kcVZxc2owZUxRqHIuTilZWbmIkiREb/bT14oDvYzm9zUPoWNHaAdLVDY1AP/TNAIOSLbFoY/zpaJnJVMt3NjjmdT2dcOYFipxMPExDgiffDoxLXK1tHS+zbl42hcdf4JBTfIMGl3SJUqTmPrtWCJbeJC0JEtHiaEraaGIGj89IU/latTNiZ7oGH6lSjAcV9hVcH+4gjHQNG02jDu6lEYcTz/pGmKCkVChPY/bGqamxo+6Zrr78bbFchq7Ua7IQJQeWmVGTHM2KSCZiEoMvw7EQbYzI5AIEmVcRLvl20BsyRL5M7OTLf8Px/ZH7Qaxny3wWDvjz4+QiS5JX+nPkLIgESN4YKyQJNjmDZKVSfOLHTnEza+YSKl4uwVD9JE6zUpAOzYaoTT6NhPfev3iR8AgkTd8bHtYyH7kOxmMkYXGLEAjyzPKziyuygbNZ+yqI9XkWJldwgLvvkT+Jno5KQHYEbWfx/iNnV91nkLhzen0bYPx4ucDf5R0H4GtVxxaixN6wioGXBXXrm3MOeBdHiQ8goNDjEEpmQ2+6drFY+POT84mc+EVAh0As2vIrE2RYdLeV7BsdPgjkfs4C51k9KwTvxjgDhr5bAaMkeFGTUmWlCjdOOtpPWsLdU1CgGVgs5Lnkkju/OaCRuKQDhKICGM8QxJ4xpqL5pyqJlIdEJt/lV+LtyQAQ6BdiE97/yh9xYDlwUcwnxPyqYBuFrLZRqf/npkeFNfLeBrGezvIpcABqvGDuE2C4NZdRuKpWOouV+RZ2D5XgHeft6KgnuWVzTddPYN0GgvnI6nHZ/oeWq71iIDpxh8arzHZ5oqlWSxmNqXxPozUpIl1lswwZIzsL68EA4Q1q10ke/f8ztI7tXR+AIJvy7/Z1D/+6lMptl4cNNWx2CaDZTMbKdQkOfnYxBX06R2oQRTOmc7+dIgaWRkRJ3EGk2bvoAI7cPqfYSGnhSWubBA6ZcHcwwVOYmX11TR+Xn/4vLrgw25x8/xeA1xDCz3+McgO0B5k/L7hr4jDk1VDBpKu/PjxRRfXagt+0r/ucUP5XAxxxGv1cjGIFKG7g4tfBxuEDN7UXd5GSK7kyW3Ak+18URTptBDjtXSQzL2iKRFp893c/jOSpWmimbHAlcLNkAWX/1cRHWikhjzkUDKEE8qDyj30g/PnpcLWRMvmc7+IEhP6MjW+HjO+EFQME+bL7TZop9MFmKrc9MNyK+qwaMbwco61WWbhRkkDuZFRE5VWsa2xVMyMnb+eCBVzBUcCxqw3WX+9/ZkD1Cb80zmp1k8kw+kMilxFkWefqayhNOJUPfnN793nRX8OZkw++jmvrgEo3Qi03dfGxvOwiNJ4ql/NNpTDjjyO4n7O9wujMh0ymlR0xKy632yqQx0UkZbIUQSatkN7A/a7WyQQo7Vze4W/+HyVFTLRLyJ4IpPTsnVgiZkXxABgpukPjlaSnW6MF1uiSEKPyA406pIh3Dc6Ky5i5o2cCKN6sTNQomIvHcxMb4qXUVMEk5Mtek5XK3y8j/PPpkMF6db3NZnfkuoQAdQ5TpKL9LE2xFybXxUtYe09WXkYPXAkQbJQSqBf/NMRclacft8dnJQiA/5u9InOkjh475KcOcsYIJOYO4pYDN78jStSOUBHdiWXKhPkhwO/c0hzpb1RXO0DfaxrgCCyxytjNn3GHDvOYfCZLPL6kZy8FIFtsvMPfLFfEKGPtcUL2gJzSvdd7bsWsfO4og3fk61kqZ5DDFifgjMvJPfvIeQ7mAfn0+3nnhWozGfE96gVfyhHWU1q7rH5nB+zSAHt/lUcTVm6JqjWK4hbWNCjJFc8T22xeztz4rU0F+6ikeGWBEO+dhfQhJDsFTOAN7zII9LqsFG1wiEs+elhPoD9E/aDEU0oYSnFOfISO8/bcBDaAyVWc+wcDIK1t7rtPb9uUHiWDWy4PX1J/zCmEZjEYAMwc84fJkZxoLQ2JstCaVXHm2Qnpt7feRYDR+qo+pUEhp4xwxf2NgmTZ9IzVRMih32Njyzjf3Yqn8O1/4lRLanRmQEs9UedpUMopw3xJb5MgUXq+4DIRstjpqmAdvRJHFjieJ2XU6kzT6n6ruT6x5LzvjVH/B0ui1Ubm43tkAEvTjvIZKSpTsDno2ut8LkPeBRUecy6tD9fuHO/+emW7JYTCrQgMGx7fVM2D/m5gvOS4X/tSV9wFw6zrgAt9HMcA8jf/zTknVMkPBzzjCSxifiXlfy9gl86y91WlOKFuXZQ4btFxJ9nsnLvz+PG6rfX1e0mnqpON9PVPrIoQRiFNdWfgMqQiSs258QanSTw9g42Ih17dlOpo+hKacNeX/RU7JZRYFo+LyvEZigj0ice4OZmdwFqggBpefCVNRtis+yHUQ7NkZi2gm17dLxq8m3GIAPDpe/GNaD0wpYfmyDgmG34XGWvFAKxNy8eDtvd2wW16ZxuRRuob8QrQ5/FmaNqVKAjUig4G6NL3j6fvonEN0uPqdDo7H7mwgPknLk4JeuCWHjrYlWtCHiHiS3nIXAZkTaloAJTFM0EjUZQl/L3TfC54jzrXnJZWspcFBeu7wpcQ1pTL//mQi5iJ1NdujphsjAzdMr/+RmrBMTON9Tfw2laWyL4EXbPH5Tzesf2E8AeZw4QhHzvMTNNi7IMV0qQHhvty5QGDOBpz20+VZI+HeZHBnqm6LJmgB+7rabBl5kfOksuHc0aE5ZgDQ5gDXM7ReqDE2nTS3CVVOxoEcXFXqPfFk4+O9ZlwSzuZ+H09jcNh5wS3fW3z7tq2U8PS6XyOtdt4uQVPmdnBmfXWn1KShq3GifqicCv1ZcEFfVUs+rqo6qmD3W7Izq/ngU2hgMHSiw+ipYeO6pG7nJSS0bES/e4z0ar20MEbR2E7jzajmig35XM+f50uFuaxcaDYjaU3BAemcUTYKwBgbvFr2Pn+8GBxhY72aXs3t+KluS2r8n/4InC01v2a/KkPeSRQc1KsS/HLwaI+43/4sixjGjA5rf/C5v7OfqM6idA5QqVNBDvv7OTToBGiRTUvvvt64ZBdq1de1CA5vN2UNcP5M9rdgdfp3d3+wAjbKa34/T/oyRgjjNWS6FW6KWycOB0iYXzqpwi+cKb05AYz9MuY73qf6eJW14hoQKxNfwiVDGkddbwg+4Z52A0udrmwpNH04RFcaW6jHltc2d23zc2Pep1jdxiTG+ATX/mzhWd4Bf7lX2cCW8Sv0WZ+g3XZtL0i39yJ05f59mgu4brzt4k2TEs5PubXoWv4DhBrU89omWpz7iLgH/LUI15GJEtbnxG/2DEAzw8PuHH5ozB+la5B/X0Hf5f7PL1eBZ1N940YB+Q8FvKHEwOLxIdkRZvWlbhYqatxxHQtnqV6XDcnNDqt1w12qztO7cRKJndZNZA/bIJqCw2EC9LWuvefdCgRGFSEH+70mDk4fKAGRvkZaHAIbf5f2yz/AcwIuoUN/uVDgP3TipTQubzPBn8yTlzvqx119IXicldF58naZc9uX3nlz/nd9r169PNxRz7VvFAnfqH2xZ8AHJ3HYx/7VhUmWsVx75Ty0PL6kMak8XxqS6xVmRe8YTAeM/7Q9nrz8vmlt7P0EjcXUyT6eTSWWRkJjcFDoZ4hjm90AHB7PnJ2Qq8qjmPG9d5x5uZ7h6LvcL72bEKT83ocgxw/pP7/GWq7grSeluNMzmrftPM0Cd+MH/RK/0SgPDHRqKn107isstbNY5qh1vMjT5T/HWMxS56xr6XW6v/vrbu4heoxinZWdd/KGDlkP0cvmTPaaWVWostMG2hz+bWyT4E91vKCfJqukWcBBW3aZfnXPGy/sbKjYx+6TM6opIyflkHZyOzXj/qU3lOwOY+neKKp/Lic++14xRnnmZ1vLRzTluY5p8Y+0GVyRpnatnaUppGHPfg25SXJYx98XZURuke35B7baYhpvZIIy3CMYyvy/2/UdgC0vvyspNB7mh7P+7ZNNHVcRprGeMa4Utebn8LxqmrMk0QacjFbHs/dMSnjDyntWS1EfiuJwdiO1pPzFmq7gmFSnTKi9yB3nnEIxozHqBbCfXyH2mpB+SgB/RnqAJFP0Xk7NdDGU2Vekt2vc+YVAf1LecQDgJ2kj8UBS+4L+XWMKPEw+556p1QNllFl8CX7SFMzU2p/5hgA7CjDQ7V/w8ldz9R/1MiE/D+cjwpTTcs++AT8r5n9RPepnBtdiMY5k3LCGs/5UcvZLElfaMaMgnE/qyVVEadOa2koe6dCwy3tR1OZtbPS0q/knh4VOAnN7OeoF97sKWtouCGPd2m/Ts7KE6j7VWba/IFeIQ45i+31a5n6Z72SopZfr+9T2EPBuDyupT+j/AC5l/qHjE+pxIfALv26vlTU/aHg0DK2/f/lSJXmUDQrzaenZOHskX9lpmj7PyrAobMASQ8zfH2UVG1dNRGUb8GbK9ebsQF1krPS1P30nqYzMs3Yn1UYoOIkNOIk2JL+aO6h/qHFmCJNx/37UHm2dJapA4X3ehEzBnbNsFGG62r9RtJ6jD80+lB2XsIhUnIFA8Bdh5yVaj3xz7znzfzdJt0X+TjDH2hIGwBvL8I6gNNeCQV9vfzflsXNCxwETKBf5QTwj7upi333RP76ZGoQH49g7NyfK4rVQLtHxuMKow9txYbC+DprVTZebN4CfAtob3huW0nQim1UmCY3vV63osp35m625jLsm2WynaVasfiVDSrrJe3wiRBqolIy4ImqASxUfWb1at0WjkVAEilhXj2z7x94ed7IZwtYTWvZFAdWJP3VlzpGXZzylmYiKulRr5vNdhprAks3ez2l6bQ+a28u5bVcWK0StQrFFttoxtfxFttmryyIdb5xr/1fQXXPc4+6leoulTuZL1VzYiN1/+Vsv5qm8JKcoP2jKWGecV8lrWXqHtMX46bcnt3nW1xzYyynVs51JTzLkedHtkLtMyOxILGWaCEmCa44jOP/RDN9HppXJLj9Vw3aTPWZSnWImbFvxFH1icq1SvQRIYaiZnJLXaxSqlilGOW7jb4KBEkKU0g20G0yNrF3KU+sjYxERIeN1SNlJ6f4OW7/WVr+t3Z7rW+goQfmj+PlnEr6UsQr6BmvXF4a53RF/SyHLG7hay6N0PUi1S5Jvclo4I7l2aRfeR3SXgKpapGempFC5BkziRTiAkFZrusMq7j0ggCxszvwbv9l6pZLc7pjePRfQBkYSOtQ/U+gHoS3t/WgsIF6MMGBDYf3sesh0MIQjjx13WBpI41VvQadmlQqV6EFh0QxKQ415RMv15c1Xr0SrWoUasIRq06Zei1KFaugfGKMr+NYjjMTRJ97zSwYx0FVFS3y0HG+mvi6gU/Jzm1QqgoswlKrWYt6JiBsBj61CpvN4fanKYM1G5Fa6oRgxa5aUtEsoVp132SlylPKtCkaI+tCmDIcRzQ8PNjMNKUZqJn26ev4YIIGksts0ZCZqaCI4uKkMxu0KBwsnF0j2DxfHgtws4sD9bhtuZ+a0i4ydf43XwR9C5jMlsbdmhAqUf82tDUxb7vD6XJ7+PFPgoCIhIySVECy3qOioWNgFoiFjYObHA+foI+ERMQFkRRMmoJMILkgwRSUVNTdSUlDm4pOCL1QYcJFMIhMLYqRiZmFNY3odGzsHGLEchbC1d0+iRMvgVuipPSSeaRIlSZdRqEyZcmWI1eefAUKFSlWUrhSZcpVZFDZUe+pVqNWXZHquw9qLFqTZi1am/RVNu06svcfAOnUlUM3iL8Yvfr0G0By9sGgH/zop1xmFtcvkF/9hmJ+L958f5ZgLLdx//jXf0wWH39/lWi5YElWCouIiolLSJZsvRy58uQryGNLqbYqVqJUmfLS7O5en+1RpVpN6abVqdegUZNmLWU4pk27Dp0wgmI4QZblG5phleMih8vjC8r1fQ9EYkmb2DK5QqlSa7Q6vcFoMlua3x/d7tcWdD1rN/u9G/1mtdkdTpfb4/X5/VYvYYaz3jVds79xvGRMLOehJ2OxQ68bMhyW20r2875JivUbHWz/hYYzsfCwGvgoFkZWPazDZbARA31RoPIq2ccTMHgroIQKJ4xtOLSSOLrZCQidQjqnbXhCldTzaC/zfp6CaSqJRwv+C0LJh3arNosvZQ//YlcQIijHyqFABHnoz6dvlU5Dh2pkVUJHnLdtxB5Ws/j85iVWxtmuNuBxy2PX5mrXiN7M0WAiNSlSNbV8bPRlu53ZyvA6rA9kib37cs74MPf5mfP/WZ63ruVtpSxZw+YdxNPaUDoV5aXLtcrHAWGj4q+mVaa+XansNqJC2IfFx+OkGvKM2po5NOxnN+EpfhMwftpokmPF2NFxhZqb5LMNNr7p7jxOH/SzjabTd9Clo3S/xx32+pfl5YETbOZdGQxOBsGT88Jw3m7zh4QfRp0/SsYe+4sLQG9c2QQEyPUQGaGsZatTQSN1AlWBC/n0KMiEE0QhSATZAZtoKsuwCVZJOfs7iI54jS4hSWhF4UROTZuOai9Su6p2oPue0EN6NCkaOzo6LuSBYjYlZnW257mSB/0mowhjlWORkpfskl1wpR272C+z48I3PTiUww51ZvCavcfV0zldMieqWHPecVkbY23oioiN4MDJAaHlK+LsNX7ZaQOXuMSjPhOPeC794Vn1xoff9I//kv+/NeGlt1jJolfGgwfNXnFPZcNMK5s09pg3aqj03B68rB929bEcOpHzZWg+EIsao09X/ox+/7/x7lJxKWrYcP1Ady5OrlhR+xhcdC/hqMgXba9l+aTb9TwjhSJlr8BDVYfRnk8eaH036q7CEj0UGPKbHwoG) format('woff2'); unicode-range: U+0100-024F, U+0259, U+1E00-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF; } /* latin */ @font-face { font-family: 'Dekko'; font-style: normal; font-weight: 400; src: local('Dekko'), url(data:font/woff2;base64,d09GMgABAAAAADwQAA4AAAAAa4gAADu1AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiIbIByDNAZgAIQyEQgKgboEgZoDC4J4AAE2AiQDhWwEIAWDcAeEMRsZWbMi2DgAIEhbfVFUb6rBf5XAzYGug4kJwwGhoBjW1holGAOGHRHlLrdonr35mEE4xuI7ugkQXd06jGUdRtiEYEdocopWHqL9+N+Zmb1731dFVKNrFtME1RNNG01EEh5peFPZAZpbt2gWLFgnrNnGiDVsxIjRMVpKoiUFEYxGMYM38n19q18/Wt/3Wz/r/597TTZOOgYFKCcUCPXyX7qMwAGnjbm3dfeeuY8FSjd2KAElJn0F5Le4X29655IvESltBqym5+Y8IbUvB0P4/2vzHU5XJRUNxL65tDO8ui029WEbTncjmA0EPMFsgKjc916kqrs6Jo1pziY2/19gshNuVk04YpJtd6WzSiV7vXSAlH0QAXD82delXyW1pLU1Ixnk2yprtSh7UT6Q7D2w98D7JO8TQEwyHOHePUIEGCFmRPlnwPEH4QXhhelT9Nnn0YeXxA8UfRC+Dpkaru58rJF1fz/NQNfm8mwaKbLUdPzepLeXsWHisyyidNAD/UcRAEtJnRJE3wFkqc6L1qUbiLhqi7FwgI46JikAIEEBjMFmV0Nm/QWm511Y2aEDIr6WVgpEX9JSWQf4rixtawRy+GSaZ3TbIMhtg6FWBgKNAHzyqUk8gHGGP5kHiFY068CUwYQg54TDwv0uhCMNZBlj5cpgdSlQkVRQU/R+KQysHCEXZGCN1xCLAsIwwR85xFLg1HzinIk5mX7D28AQRPEoUAMKjYhBYAzERn3GdZd+k10GTMnLgDriBAWcleEsJ6572rwCy5uph+nV11+5QcMg7YOYBQNMB7S7AI+YrhSDLjMBjuF2tm12F515lpMH2PC2EyBP/7MPABZeaDnbAqCHAdRXUzTAtqD5IotfGxhkdoLm1vhI2t3JIqRmEStPgW4L9jngkKMWnXDKGedc9I7f/B/ayMjr+UF+tK2e5+IL5DfttsQ0otimbHDRqBdc8p4/HOl5OoUTDeLAVo3/IceD8TfI+GX8OX4av41LFNIHdlvAfz/8u/Tv4tOuL/bP40CiOQDOUgBwn51n62mnfBYcQOwOPxaE1dZZY6e91ttsi5V2WWXeWhvN2WC7bRbsAYaGgYVHRhGGioWNg4tHQEElXAQ1DaNIJmZRDthkkZWTi0eCZCn8UmXJliNXngIVqlSrUatOsyVatOowacxycBBQSDAIKCFICEIRMdHQMeDwSQiJyIhJGWjp6FkoBcWJFsMulo2DWxIvn0SZ0mUIiJevRKEiZYqValKvQaM2ldrJlQMBjf9tA8ArAOJmgC8BWz0EALteBAD5ESA+BMjrkDkU3C/AEnMX8YBqUUwSced0FjuFyrm310xAOHCyOQ4DTm8ATwatDli6Ntdkr9ezYhjCygMBiBCjaM8BY2nOnLCoU7sB68BI9Ma5ah5lJo8wvAKSORJTEyrAktVpVLJQmGCOjzJKEiIzYgiEcCwhjaYkCELYLBPBKtfx03y6eDnBHoLjU9SpPIqZwA3Rh9gUOGNIWFgI287KMhEIMjxWQ0CziQIKF6+O8kWHc31mraM4w4DFEgivtwvPCbJrEgQYAY+AkxBoIppTRItx0qJENG0UTcunsXG4qKnNS4gqCbhUitbRSbh69JVKizC8RMRWSfA0/Iul3o0H2XBoaHyEErZYkhUCHI4cRiFISNyrl2SM0cndu6Aifc1fI00bXCmhFS9WJm6lgKfAd/8PMJFve3oZH0RRD55m3b3dVIljBNEMcAwHLIOK9IywRWU7NGadOHRItcQNA6TZSp6uJmuFLffTgb0AW6VeCaKa/jyiImkwlX82I7uGb1OctDjUiaIJWeYJtERcZ925G86TMfFh4gz+RW4JlGScasbZa6A5ptixe1cyYwwErSU2I2tTA8wiZVPZ4S8fCwhUPEsz5gfMRstMxQNgF1V5pY/x2fK6TRBzrjbeqGSEda/y0EkCwFvuahOdlpxqpSaptSLgzzYIfqbxW0C600gH2q0GAPbAC1+I6xJgHSGBz2WZCjXX9hvAIapqkIQh3chDZ+tkhkfcUcMLIa9WIQGQSD1dqJWE60/CL+DbOFJpAXfnYtkKbllHItECXbuSUkxhjDgIDNtGO6H+RFOh53BplvL8b5L5i1/UQ8IGv/Xyig8XWjs1VAIYRZyYOb7+Wno22XfQnZdFFE8p2adjFUN++SrqkkTQiq3hi0k1dhp4FuDqkfn2vYyGgJYee5pxFSbuMp9hWIULCxU7JWt0tNXdJ84YjZGKgl/ElR6ng+/l1XZgcRhI6Lml2OhZY4OoBcwXznU3uN6muYiU+OIQ6bsAR3jWzQDHu7eYwjt29FG9HMeVtPFJK7Hx9pHDW6kxv2upeAKcQdxF0+UR6opeOdAhatBgSBh+0SKCNcsaJbv4x3iAlMPLxr52bMiz84PJJbPnwygGHJLbnvZvxVcsowhyTFwREVIeu0CSD+fauHIlGZ4ghbkrwRKtOICzQA5DsJi7OBSyph6FQyZUkCAOl0r2ARI1l2GUAW6tk/M46DWJq2MsXQMeT5xuNiRqafTllXenqz0F+mYBNwbC7J1abDucJweEwfRC+g20Yj2S/D4QzifesKYbuKcz15y6WUZK3tBdP1KywkF2j5D0sAK87+4l7hkzAxyGakvbMhVXgKtlG5SmKd0BMGImU7LOVKsnnqUtrqZg9CyUPgfRrRbxonP5ZReGrn7ISt4VN2n1s9kAn/J9h9DQwCQxTfP626ssY+TFTXojgjfGqiUp18KyJTxVuQxt0kHKdW/9CJmPQoe+lNgcSii0sRWcSZSjcm1XuEJg1xNxaGz8hSYJDDfhH/vGYuw48FPJPTteYmmBdNttCoSLY/MGWsCJC7UNjpCSVJTbEnstxN9awtwQ8eaRLLz67j3OE2UMcwqmedUJTdoJdDn0te2Lu4hUe0xbxZC8ptplut0sYJOot2PL55myY0GnK6tdGl9hO20tD6xkpGttC40OSPShlKIK5D7XjQyqqWGwDB4Tcqws4lq0MECUaTzfKgkRQWqnYb8Wsq7BVHkaY6HHH1/7u9TP/KNgtY2JR+6Rwb+IP2Y+wzQAE7sQekMDK7h6o8Z+WUTlbuQL9VmmA3iaxfTPPfREDacjRygX3ZQhOReGAeaCZTNfj2P2LabqCnbJmsLaA5MZPwtdlaY6ZAPbpMCH4cL7uKhV9hmkqlmwHIf0EYBMUHAuUlgrKQLtjp5TZ2HQFS/ebjsiRRCxCs0T7IE/bO67Emn5k2UkbYXx7kQcSgvL23fRRUhtXa00hKgzDQqJTSDcAsflnXWRIy4JuWZoTULeMqSclxQ7A1s4XMeb9dumdeS2hvp3hV4WkKw2iEzGDEyyn9pGC1C6XSLtH4yVfPR+eWReUwuovs/FVo+BZwFafzrtjH9R4suptB0IZUM0CgKDiHDTS5M7QGKzG+seEFL5I5JCgKM4O6ZIQnpn+aNmSmVdGnMBqEtwFArbHqMQ59LBYPEC35C02uXZrMV95EIDrM7bCVGfJOjkiPs6kwRSlJYQfL1VRfOBqUCKjLQhWTdwoHBbaERFG8IB2JXnUuVyMslUJXg9vlA78CfVljUCzM9xhg5Dr1/9GklmAGh/aD+2ir/DQuexEecpQ7m2JGAe0QgwVjiGUk+LLgwm6EOVpwzn4tXC4c2l32add+Qu6LP3idF9G6drbOFQ9qxn3DZViOdY61QP1PIACCbNnbvA5oMZlvTsYigqF6y5Yqxx2d0pl8/CsQp9Di2JKy4Aa8IcXJ8rguTf7JF5qiVkUxK0P0TleyanQqE9A/OSeU65FEnFZ4jFkqEYQe6A43VgFHJXbVI4u29KWyYnnXcSuYBVxbrC94j5DlVVcxVMCBhXg6EGM4NjqxWaQHSHKLHbB4Se4G7OsuBORGo2olEwNVKtIOCgzH3ffMEldvceah337EqJ9dfBSSQRrqosgQtr3MAAWDPLb77OOAfzKlI15tQUr2yVP/JlcP+7fk1YLvsxXIOMsBvgfJK8WLBREfNQUJq4dVP+qTVk42bpt2DMRQHfsOAs3Na/M7ZXdMznygwhnmxh+R4OIBEaZIhsXd9hJWDCpv+IOvgG4MArC0pwpzU+tWMHIPXxu6jxQnsAUvJ1cFgFlIa4Wpqo0Bi2jDEq7YvVZxxjDLAK+V0+YF/cilVKPUELslKn5VlCBaKtf41+PhRpCrZAftiX3BHlT8PjEEFiohrn5yKrjbdvdeohwQT7BfXGzswukZe70Ft0WqYDNBrqfmKozXCQYjz1scWjksRI0lh90snWwixBI+U4Maiyz3nP9LvECcYfUsLVGmh6ewGsAE+1DecJa3GFbfwLEB3L9WCd+9Dn272gQuRxuT3v01zOwuO8Z1tYd3i50sjchnOCgYLsIhhbQ1R9Xt1TQqhGeTDywW0SdbWsMSO44MNYxfpUXuOTNBoHrLXIVkfGOdFbY1O5dl24oMuNyM56VFTQvIHMxEin6Iz/NsshuFCauU+7ySI0YGjbkO7D/KnbNMTF5LB+N9OaW03FKwKgCwjfHWIz0RkNLdZJjGJD6z2sMUa+F6NwN4ShwHOO2/hiHGyEbi169ckhs5+PErYkhXCl+h9x84AI931t9m4qY2DJjqjKupJ6u6J/BMDU0CDFF1JcVL2M90Q9kDgguhmuMHv6SH4+QjQQ8bwwapV6w6QgaN+WYoxY7AHz0L2cHIPIFoPVi1DC2CJO2ncTlNoaViOlNTySM2IxHGVxaVSBsCTLIrO4x7ZJYnutJ7xqD30d0g+EENae7/9YsKdjlvNgqFKTqyaXCFqeHMZWZKKtUgySl44z7qp8UWkzrDTWh2+DkXRERxPmqbnwOGrmV1+4RMRFRNKmQFzvyMlBuKGQYZOk3Q0x2GuPDmGzGPUe8Odxu+KbUl9q2zQ/CpSKXMX65NqHbFaxgbwa50kgnTC63c+l/jQ5i2Qi0k5brFBuUsjHvqlh7C4lGN3SUOJZvyZ38wyeF5s7amFmv5ubxTT0TQrPELGQsF7PWDTdikiBVDYL/eaBB7qyKrJ2raMjtS6bCelAk24UOqBTxFegJKMaqLW3zTJjCjqlHkCMRaWgP+FP24upzryHzjgaNADQ5rydpiDUhqT0JUMTfL4JUYdI3x+HhOxhW90TNtGpEbbFGNhhT2QsBik5wNIqfnLT07l0MJeoMIUCUBRDHQMQ6Urnd03nQ1R91438Nz0dkgL8geCppNbV3Fi/PYS1aurEhcE0LTyzKlhUDCpNbSMm+/mqjd9KArvhRodhaMmK6gZ2Er57vERWOAO+dmXjEJXm/QYrQaU6m5uTuWvKmkmskmjqbAg8jx8gvbZEK6rWvq/KMKAX9PBjrzl6ZQNVoG7lv+w/OUYTm6cY7tFHlQSmmPyALNCQ/qs6g3d7xuzaa/SIx7w51YOCXIWsUcTYcS+HpQobEU7f78SgDFU9SNI03OmZM1UcOknQKwg1NisILgjE5XroZy9Go2SkTYcCqNzP5KMsNzPLsJ9ZRfw8RMg5jhTE9ttuCilreQ8RBy6PJjkn7jdCFKTD0lzQ26zenLB2q3M45b9UGqFAU2FQFetHRB/uGmyFpoabNSD2Tlr5/V4kdLjhTIhS5GEPEyq4Ri1vPGeE7JcqhZjMPK9Z5GchIZPI7ClFZoK8A+D5SZQy3dcF67J9JX8w33I6QgyVyc2c293OvaQWUeNLiRUbTOYRco5Vj8z3ShwtIs0vIdrBJj06MpGeeJ4T3NznZ1ggnhqq4C5fVzHD+0m7aeE3p07Q+qWz1iolRUv7z3TFtv4Fx7gUN1TQBpOTg8rlXI4JtVaosOUNu0FZatDKOXjKJMKTYfmpp4CCAKeDUDfVLVNgPIcw9JJpU1ab8hB0WJgyWNdLwfc4vseOhoJvDGw9BRzDG5E0dh6lhhfIRicGaAoGj+TkDrclvq12Pl6W8c4rxfQwiohZRuI6r0ZpgYaiBrRsdgxl3R44/mlG9QPUrKzQ0nJUPXzYxif3jA9oanmLxox4w6micY3XtyK38p0Gg32PqZelYSjUQITiuc4T1UaJvLylKsDzWIFtRdB47oIsLG2bSuSU4Ff/OWNX6MBgGMJIBu76Pmxxn4gf4bW+SiKXfbFoNgSprpRKefkFZI4vVz0Dty7L4YHzTUI0UBfn0m97tJ0p8Q/H8y0MYaZs+iRl7Qo/EiwYMgaorPz+TeNiN1R/kNTTucOghcUtqEnBLkSNZxgpOdi+DtuAUeYpC6U9qCQbGCj2wDCSnoPkmaplCxf3/xbRUvHile//YcD3zt7OyReJfx3c3MgVfJ1AX1sGNTdCvb+SDQwnAL678eI6JHfZbCJZ7dk3fu9Fi3EXzN0OHOpQJhX2pfzZMFp+TBRNViPKatgakj0cbCiqZLx4q4E0t74je4XfRgQF2iDoA4q3Xaob5/PdbiZlieVBL9RIhJapP9jTQJ+o0JZUz3Z9BQCAQCIb3WIoPgC7ZBsKYY0ZADg+SkPaJx+zjjPm7oebj8nOHCbz0XGVh7La+xEZ1UOCzaOWMbr8NJ0WX5/UNBvDSSuGTCjkIov2Q/GU9uIHvO4b6KVrmw1U/3+qCKPnsIrtcY6QQP9FSfpWekGISuTc0NbUzbm3B+Te+fGLWu+frXUfWMwFXu1r6kh+dWrGsHhchPt4qPrgPOleJnHeX04+ztTxJrTH2ZTpoLhxKEBUO93z/OgRPze6KDOhodwQjORtES0YtIeGwZilnDGbWd/Ol04fgMGYIAR2wAU6HauaHF2ZeU7vt2K7qNsESdkOuFPFVqvCdaHKIK2BNC9zlWKUqduNp7Qu8tMG6aDBVvsiZikLOQYtwH3IU5nzQ40k7E803FEa/ozcmQrmcUzAkwwwA2n4E42BdYM+gunBPAL4yXH489DPCPkLOfOzd5LK15cEhfxXYqKxd3yk6254xkRZtYL9ldh5ljdyxWmm7o/OiZYXcBUYiyilWeRv9lacfSDJGBV7234iJPIEOi41vsfUFjcJ1K61gr5zXBJgsjAifriXGeYQNdLdcqK6+pfXL5J8EpHPmsX39T7KYZjekaxXziUYJt2Qt0s4pQUy+xwxrScsrd8qbKq7ngD2+Faxc6wDKQcVDRhRHWDWP2dAkSKgjisGElKBDbRczDPS81CygkseZJMzQMfATDa40LoCsgJiccndkWYBj9HxDk0q0hbAVyMTxeEeBCzd0w7aDMq/nL4iPMu+jxuS+AZTsK55Yfg3/1F9k21SlTGCwTZ9wZX3ST0/on4R4t+os1LwqeeR0XmbNBKpg+GHjuSCWWwWHhKv0DhNB+kMmT3naOwoYKa1SlCU7CY+En4ARh+VfPxDfNguqltZHGHPstTHFSxRDh8bWZh/F1YzD6tAkX7+PSs0llOGTqFDYVuo6aQxRXeiouECIWIPqtQGnUa9IZ3pWmopCCxXOcmH4+acYRUAduf+noO727IzN6YUb6pjEZ3NLGputdAalpJmzliy8CiNnJdTOLTGmZpwOCxbq0DyapSe5TnXxcV3cQ+QRcrz0lYgLrX4UeFKTKqospAl9Gq6yvLzeSXsRFck869qzOqZDHGmkLmfAKcJneHFdpLiIuL3x39TOEpZqSJ8KQKgPu8JxEfPDfF3X1WcP3MNzB0cbvtjZ4IZypem4JqJwM8WxrLCh76V8x0j0y/eH68TNUJfw+fWHUqlDPFJlH5ARL7yuGAocpYiOh2j7GVjviTB64ASfseDDMBXbeXcelgKT6bm48/ixPtSHQguDHKDEGTzf1A0kzfcdCvEsnjmddAqKA+UCyoUd0AEgwbc91coF+pAJWxmGdzu2Ak7dhpR5WizbI9Q+BGjNfAMiSENGiZVe5Cw8zg7xBxCvwjdcMCA8IjEoe7U9fRXwFGQDVA/2VvLCfv9b5aeLMU3shCDmN+i1qKKgPNQlSAX9vw88xbXWqaevv9Ly31aaDGaCVky7dZKfU5+WRwW9WaWYJOWZrHQgWjwhgdCr0sEsgsMTqjf9G4aiXzAn40YU8W9+ELJaOmzPv1iZfaauNylqTFTVLh1m3a8qq4zbdd87dc1vbm75v01eYVcvs3SlZVH/eYZ3+xTck8wqUg+YNRcrcTJGamJNPBxUKkwHTQJ7F3k7A3H/5bHAK4DjuF/IRGJoHiaTxLOLawiYqmgTQMN+2EhdsSrx+HTfEUckAGrvzPaBxFBl0HhACPjW/L7/pXoei/wkOmvFjMms4h/Ux/9LVLKXZx0ePhKwm3UhIldc0oOjdY5PgWw2RQEXjhDkEYqKYghLJB5os2SWGLygd6EQZ6NWWWZSglzsFMGygcVaoJM06sJ1F+SbIY9PoYudtFwg9+7PAzAUKpWV5qmFd3pDF0jr5RU/Wvwsz0TDVNCsRpaJYX2o4NGglnQUIdwI5Yh7tH5DhEtNQKTHKch2wvexTRKHxu8+rzXR86eakYPyzjhdPvKyszQJ0qZ27BkqPYL4FRgUEjlBFEhX/ZwlPDSvKI02BUc4k51I7LxCodoa2NH5MReAhVj3rS5IfsRhYjn253IY1KXiromPTTKDyUEIWogttz1SC4xLQodkRVRDYl9qVk2QcNt63AHKMwaC9sOO+xvyQattwvVq2VUK5oVCl7ZCZGHYFUrtCyxQ4LGFJQ+F/j7ICY86dnm9e78a+byjyjSw8YC5HJYkEXoYZRvRyJ/2aGgTq2AfUoBROsfBoB8BkpdzMuTyC+qiWxIGnwleHUmHQCXpYZ9d55kNFWF5rNWnKi4EEaAIeJD0tAdoAAm6w8u++OnhjuMXqZMzQDZ8LksDbG1qW3uaX/SSUBnuPZ4TV3YlePLmV/Oj45+dWaSPQN+fy3j+6GVkF9Yr5XWvzE6mnljQ11p4+WCjnNjddWP9o8UAqSwMfnFIoOLht35Kx1xmByZH5We/kXZe5tovw7OLBmIgzggFyoJJ1D0u1LGjcliQ3rMZ8OLM4yX8+O7Ee9lNc9vzRc3vJ7fenrUY1z9TXDn0fLgpbF03Y4Mb6Dj0jzw2ePlaxIpUiCYenl3nHkwgkj+cwRzgNJqh4UzRBRbrGTQuzk8cuybM1PsmQ/XMn4enIsbUzWn/Qyz87rZuA0Wy358ZB/kEtSt+cir4svsVDWS1psB0ZIoT8h4dqoB/3APeTnwJdSUsxMxuAnmtBKIq4yDZf6dtI8JpBMTQDe8vqQ/ytp4saD19Eiw8t7eoQJgz/dLMVvllUMYuACE2Jitr+I+O712x8LelR9D6xbxRhQjHGhFdKkOUUVN1AJUNelR3v4Q1sCMxGc+aWqsT8zpqekzbZFRIMgSxN/v7WMBvFv5MDtXyWGFywE38PPvLoldxrHhQdCrv3zkQEkuXNyyoTNqBSBc7zupTXaAUJ8g9Vuu5TdmNWZ1OSdCSYBrIVh8RCh/yaVXfHAysSfC41JvUwfWfbChlXXl2GzY95vHx16eXsGa+b1um5dfYvCVfK0Nv07VpCX9B1/+iat0qrnq3f3jhcHFmuDNyWWBN9ZVlQHJsi+kbGW8EqeNw9ERLnQl9uFwadhW0eEDF+J7o5P7CgPxrcuqBLXLBRenkxEFrwSSIxa6BgmkqPzBlgbbCDuW1ctzgHLDvsa7rCsG0vD3bav9IkemKSZyubwiHo0jYQAbZmfWIJloexgK/rnhA3BPlHVUkxfP487ncpMpS/kbYxpb8yYG796qDzqqY83V0UmMSjnrVYQjwejRTbhLG6Mkb+Zz0skd7DXmuvaSpRu33UmKB+TyNZd40tK7eiyKBDouLjXW4vTqt+XJzmjDLshWlPiOijJVR8Z//k0tphoOeqzGpukA8yD3G6mQbwcl66o8tULl0eX1EO77miWJkTlRocdwxEOeOykhHc3TnbBazm/QXsaqcJuQynEa4FSIhVTAbDwegxpEIUu0AKri0t0B+e/nx0YCh/cX4SNKfBsr9stQlX9z+ekFO5oeqmr/j3LLcBt+m2AkqGKFAGE1n1NDD1Db4vVceR+vOvW/IEVIlzQxFoiT6ExaK7kxx/pO5HvN+rfpLmUyi6Jz02nfF2VHldSonRGsseQ7ZiYnNP6ojzlH245ODykM8fqiP66p0V2IJXo3UONDqylbYuK0P24nZJS2YbxUMvUPMkNgJxagfdhABHDKnX02rve/k3fPrdap6lnWnBzPrHnGvC65Uuz3vuQkEN1Mv1KlSrMxYldH9a/juUuEGQ3TIol9aUOuvtSzw8IVeMiBzC3W6Yja97HRw2vkeRG5Lh55mB5WTHN75gxl9d6pLMDYazTBq92vtjAGwywCQ1hoG0eduddU3/bpvuzXrAO6JudIQo4wbFCIGO2fo4pyZxVLXjZ9z8t2C224kG04GsW4UxoPfAadg9m2wTz2StQziyZW0SlzmAq9S4rXNV1QlsqMIwhgAKGT6B06zQkB7fhxuiwbZAd70vxwwT9ixWzIKVlk6mji4NNXCsuxLICI7u6ewEkjVQZJtohoaMUCcQ8/2KsSiJ12pUyaYtYWaH1FCy35GQfqGk7VrhwK/eDgQMmu1pJTRTKMH9WPiFdYBUJU+N1QXstRzcBQxB7SKNfrr7LIq7e35BwvjEks6TTGAUUgMENXiIsZKtkfNORaiu8MzZfNpSVNZ+05vP/a6yWZkGB+sIudrEnFTd8t24UNZ1gtvbbdNF/rgVpVpaHlavd08sakstkSw2FqmeKh07+UV3UuIShOIDlVWwjEV1E/ZiouJm+N/kYvTjeZw4x7p7rU2fFtSNu+qJr2YTfIK0yplCQAHpSHEmLhRZPVrIqGLBDZFv5Mhv05PSwXXAE5uPrqEnnU2fPffnV4w7N3q0pWOuGVg5+WRTRLSh1jBMpYTExGWadJZ+yLvgFOHwDefWo6qQh7rRRvFfz8s/DIvf13d9Xi7m1d4elweTp9QkoCNXSSmTYTzzemLytK2BAo81avkw6zujfjR2iceeHPw7zq9CKisPXcdE6/3hRduVIb7szIBHFArGASe70UWA1ah+mGHAJGeGN68vFQfJ1qSZji+Olv70zX/3pv7RRwhdOp8Fg7uxJlQosrpqvKay6dzU7aVJ5m61pi8wBqqKzyM8MHWexnpDs1Z6qb3xweyb+zu7nO2h9b00xLyFkCzq5vvTnEIbN38iTvvBiJbK9pUH/+FlP7ifny3v2upIpMOdEhVt2gsL9DLPu0SpOQ+hE2UD0zmR4dqPWrW81pRcEVEV7AkPoiWVuEs46Un25Zcq1jfwPkrdm55HWJpXPlerZrQ8G7nLLXrW2SRIo+5DAhFP5G4tqYCnny/gFjQD3paV2Nq6P0IcWeWuDO6mnwm6NrglvIqkGeyOHVePf+gz9zVsBmTL+dgBj1Zywv4PE72FLxx1XyFI9S8B+VHNv3sIlWU/ASueu7QVcIQ2ZwVEqOopxUFGQINgtkY+oQuHprwKR9SiisjIKswUOrgQZCqB8aw2gQCbfRV8JQrP92pq8GKpnarNAueAXErTkUcDeJNCfOffTBTMbvB9b3lZ0dbrmUTXwP60MX48eke2rby6U9jLI4o26nCPWiYqWXlCa/WJ3rHv4fnWq8rDAw2XMetHr1UEcn8Pu9VEHf0py2qCaDJ0X4DiL1OIeNjPsEuQFx+SitIJ9K1wugKbDD8I110M7RlKxatebL16iXUW44uFziEoq2qu2YVkxTDEB5sq5Q7lFHc7CIMPnxOMjIDxsZ4iN7Buahsj1ejkiHmIJ6EJtj7CFtmC41IBJM+taPGbhcKPdqozlsKk120gZ2ngYlqkQwBff48TcjAyKHYUTOmRpbKXwb2AOOAR30CawWJ7oVM+oC0L8WYxrkBOwfRdwFAh65CvmgATfy9xfJoYq/NGhpYXW2P+5TdmoyN//A0i0Z5eQXH4ZojHYR9cV6aMq1Ot7FL2JBQK1MFS9gkH4gAxkQpNOPB+48vyGRfu8UMsty+4Au4InXIUyV0NEC4PFlQRGjh4Nlnj+PDgGSS78zm5qDCfHiQonfjUati4nVieNZqoY4EcIVAlGgwzsCSZG+DLEgzSM1wYJEdugL9utejGpjChoBJwALkKiFTuQ428ux1hLfjnOkyxXGZcbiliyss6SqL9Jw9NJfiOPhf6rpezbSBTu2LuwUA5oWbsWXM4p6bWXWzwKQH5TI5nZ3FyNdHMtGpTIOlAAZR68wcnL4c5KkZZRCOSW5tWnUrL4wr//orhhhZfyj0fO3bduzTQS0hZ1d3fhZ45HOZ5eqmpce7M77bONUy8fnemqInqjJ6iSbf7WjcFlhSuKargK7b9jrX14MjD6L3Oc80vn0YmVje15MQ7yZGeWnP32pUsv2l9B4eJ7vCfKapLsTiZMExRMF/+gM8OzA77/WruX6atcO8dJX2fNGig2KOmarZOJh4x6kSekdik+dAPKsrPazQDHhBVtbFGIdy15sisuJ6igY1Otqz61ukvT+ulLVUrR9wFwTXX+razhlQ2LZXJmaCK36P2fpJcdeTtnr7nqRnSiMxVGiBh0T3sBUUW7sZH2SQ5X/oOkssM2X9+pq2wj5TdzI2hwBrUWVDtRsAul3sZ31gW6RafWjYP3p1kNLwG9Nr9Amo/9J96IaUHVuSTRbrkSkZE5dh5/iInJg0uCRpODW9q7DfZsE2ZQ/mLB/ADmqFnVkmWEpQ7UXcIBO6UJH7rHxkBpWCfxfMMhPb1iqtly/8NW3RzY++6yysbWZhHAfWcMkDDbnb8jKna/qmWlvMvbFvPM9cH/rvuzE5oiI1gPDufcb11T/fGJqSdrx4q6TPR7YNRT+5T32CA8vbVWFkAZnbzdMKN6sYCV359iTh/0pc0VO02BregCgZ+CH9x4RovShT6EMjcWh4uIZ0QIz+grxF35QRBZF5QrjWhrH7br0vrhiztxUGIndf2pCTwVMnO1JdaG6J3iYdhb4wGDoZGQIMUxdIsmLa6Os0zTWF7b2HXqzoNxepTcHtH5qeXjY+yp1vDBB16XN9CtV9shSViYhSB6S5+UkFs/1vmmJB/iq7TuZZokDlARPgCbsg1zMpx/bNOhpd7hanK3Ldu0qQyC7EXWEXfrh/oa+2kP7MguTl0baC016aTKXtdkiXiMvlbgSIzmwBJIzpIzYK8stTPdosj0RE5+XmJTcJJ5pvoZ0GPcE3gwGPvnlRy0dN/4hizVYT+FlwsA9kk/N2DMKei0mUzYhKgXN+sGpbLpLqlig6yFAPjijbCpim9OSEc0A0ZlChbOo0C5cUr+V8THo2BTCDRCep5IqsT5spd7LXsjoTCzsLjfm0JF7Q8Fhyj8ZVK8YBGEhTgk5n2Md8XouISF9adCpvzYee6+G+sS8OsIUD7y8pFjlfd/UD6r7aEgR12+vCWN8EkEmRjbJ/SLPK3OlZe3awkxugiXcwpPHogFtKrdpnNkW5s8drU/SdXcx2YaeJdypg2R2UBlCi8CrJAtxpgRHoKbRtRcI8CGISRUtapLNfh1Rnl7ZilmpLtXHr0kr2xTcw0qTwnaHGpqktLe8vL7WZUivZNsg5eGuJQD3OWLumo7/n5ioW3moSXLmc5u37KqbcuVYo682WZ5PftYoSjowEB2VmtZafEBZKFEE0iEEL1+g5dKSRzRB23LAtOzmIIuaL3MYEohMpMJmaxD6muOnu7+b8xUpJT42AaKnQNOfKZNS5w3ts1XOveuPEwh3eGEBbPjw2m5JQG7v9xjEwLpPKWvDJYwkhoYxnpojELKytFinYcg7ljj8tTYQd1rt2cgP4Q9DKI9wLgZ9eJFBHkm9grXawJRMsEBvR+N1dO+4fyyxv/iAl88yVqIWShEqgPNkMDCIbC1TMRlEvQXVji5HVcOc+aHXiGERdF1NyOjeXPRJ9OCqPnhFjAW2DN5TIEJmYisoFHBGpGSWpZQg7OhceiasH5oDy4KXQMLZnXLpZiYrfZWcffPwNzOccVHDyxBUCddRJslT8wxuhwbHKtt5DS4B7M2fV0mlb/zMysnqDDvchRV5wQmrLZ8+oLdWDKOb1oGaT6AshQ6YmOMBvVYihiF24+rVmPepEc/JdY1aTMg8YS6dlSOnxXyH3wkS3t372TpmATtbz2O9LwJBDEA1dYXsEvP8QUwIEEny3tYIo4Y50nj1rrdK1a6E2jhLi3diYGJVWbwcHbMxFWtV/KYEmB/4sLIQa+IJc01gyJUwXgaoSU9J9P14W1ym1/QynWOMT5SwyLfzBRXlF06Kw2RmRneVK9qtA8ZzVy/Lu5q7vPTy5pLMgpEGz+W+5uxLs83p57+UNrjtSmNNrCMYa9B3ZKSq9PmOyGZ7+HsyL70z6LLYDcQL18TAb+gv9i7jHnq1MuqH1au3fzDfqHh8dVz57a5V1J9FmdfX15Q1nS9rvjm7pPytXUOFDceqq++vAWCBc4m5hQkk3J+ZMnAP7gvMoxARMIv2JiunWVZpe2sK+hb6GEkBnrBcH0xvogOmY460BkyIvZlEiB1CDaFi8fBsapTAF5fy6Z7I9uIbTaHJMQVWe6SbX6jnbQ4LO3o2FFwS7J4zOhImfdkTuUHvD+XvpmxU5y07yTG+ximEu12h5Qw7dWkz8PWjr4Ume65MQ/7zXK6CpLys9Q4V5HFybNP7wEk/2K3r9I/KkpB492iYf1XNJZ2tpbm5U+DOTkzMyXsji1zXrJqwvbv7oTwa6apkYD07Q1mn4HKUCUBcLQmKhLySROTp9PjUAWpjJvabTvR9EQlhpoIgAZSFr6Suy7JqIckQr8oek6bBHeIwqn6DjyJmru4mYCAA9WddzKF7yaG3Dv5xb23bzbulI61XkypZY2VkwubwJ2MRCyfy2jn6upqAT2gjp38T6RQZiYqtkD2QZZgd/OH/J+HLU9qQA4i4cFmqRXePT+Oe6ETvvgzPm53FCwoA7rW8/wxxto2x7fZex4J7VdFiDzEzErw04+GWgXpvZayu1r5y6odn0z073qzL//1J5eDEdnM4qzVbyfXWVZrnYvPm4jM6HAChrddRrUsS1wsFqYWgj29+gOBxE7RtoWv/n70Od5WR7belEobNRHSEk5yGuNXAqjjZ1bTjx9da9/kuUWYWzTnZ6hFHe5a085DB58l7YarKuOcp8a0dT89O75T52urbk11ZxizJFv6ZNHWXIMcJoFV5Gj+K0lSkjXVHrUopD2NHDDF3iSyIaKCmKq7uXmDizEz1mvlbmfG5s1kZe1rg3ePl10zZyGomfBdsN+6JaD0vRN8nwYS0oFNwQeyq7KkdvXQuMl7TU5LkMnZLspJNmjLflNwM0K4p/hSdM5NyVW92vMb4W27MeSV/bc/3EnzshZKpi7OfA6D2U8nFRckk/KYXUlAqqh3pRVeidwEjaG8y68FmIpzf3BNRzSgPKg0zBM73rubB+TFUc+oW6l/fBl97IGGa+R75yjesKdWjTUejU70xJgWlf88aYmiosR8N8hYXDcgN5jZLUtCV4T/XtDewxOB+QrWaxzFrYRDhw6+tTNkFCfoRCLlEQFK3IjRBmBiAvS3zVrA2r4WEfY17gP4ggS0lIF/E0uMTcheNHnVzlzR1u7pTnJP2J4K8mmbpyJqP0OQWluex1FnFlS51Wp7HFpBs7d7zynqD4rKTeIxEMrXiBDxbBfz8ygTPex1RVAvTtCLUdodVmZ1IH/W9K+1Jm0X6gry0HFXKGnc81+oWZsq2jKz/XvXE5FNkP7D2jo87tuQXF95vQFwOM90On7cpc/EZci/mUCKokktYxJNB4BTkZ1gRucSmV8XhVQyzwS0n/SLQP4a1wLv2zWBRnwCzp7Q84dGOVnk3OY9GWFvz0Zm8kIhOILdOXFzuRcEbN/iGHwSTtVdAXpRUPk52rYmfNTdMjb8RlRERHy+pN5a4uVEJ3oCMHf25vbNzoCu1nhdXlLvkw5whQ/G/ww55F7PABEfG+VwuJPN3BZ01Fl5PM8Zl0+qFPHtIBKB6DE7rjreky1Y7VHsgX+6T2hbPefNuY7cObd3YlndkW1FF7vqolDDREwLW8n7JoqhzpT8/TOpK1UdJ9r+vSJLjpM2gfkgQ0cOomHbXxWbDy2Fa4SuVyNRfgUbK2lUo8nqYk/4MxfgzdrYrrtUOMVp9BKEY6yMD8ljODywW4AVtvQBoTHDGJhlNUJv/RfGXq6w7cmaEjghuIBxvlfxaax5OThTPntnNW3DO/ZUeDM6cinA5Ix3V115Nx4v6kUYhjEFz5Otaaf8CHQmtMWPAW0TxSawNrt3pGNgXCDY7WR4h8fJDdgYqTMcgrTDWpB/NlvabKHHHqt5oukmgzg5R5e9v+vLdJ+LzJzKywnlmLY9Z8viKS5F9uVu2I/GJHEtsoYVxy3n5wvI9wO1TiyTGqrzNcd77VSFqIYcU4Xlz7TV8620R9goZmK412DL5W67RkNcoNrlT4eEDDZsYNjb/3qkwndzmjtYkqQFr4F/5qy23+cz/5wsjXv+meFTh1+WZs0PFIp/SUnkZePzqlIIsQtQWh/7OUvnEMnG0gcyjWKCJ7GG+9pwkNUKIbdPbjF4F53SdFojciVp8JLN92qk0nZbT3lkqoEOUyFABUVgeFs7OTgbyPqASKFI5vmY/w/CZUFmMyPJnpEITw09FkfQUsgQ1CAfKReBr2NJvRWo79xmE4EngZGnE1LJMu/pG6l47DvJ/PMUlkTIDaeAngnrbBiJXHhGutsvScLSzJD9ogAxsZD5j0LlsBnD9n6A/YM2/+JEE8aG10zvmZXAvl6QFJRAwrR4eJgMRkixN3JGYpGTpWyfmaGlEPJlD1OBbE26v16+rZZC2Y8lXsKLySWwGLAAATp2VwPUxfuJSNYJn+6h/AsQ1j+/IQvhzEqXMp8qPTLDc5D1weFRbfePHv2Q7jYYVMtLv3J0bPI1N2PblUby6P1xpQGiUZOE/PD9LIpHagQ0pqzQ7HfHUG5qLRrVbncKMrBZjHpQIKvtKRt6r1jzJOK0Eck7mqPm0BbxkQ7MdweW8s1QovBUjb+LCT4dYWyFLIdFA3/nWGK8yW/veHUJKqGAjH00jaPYUvx7wEEMitMK4M+zesp2dX7Y1EUOz0yHKanNIbUFchztJ5VcDjre+/6DEg+JR7EzMfsbJFgL3GwVOiirdgPLD2iBGEFcpUrtU4W0pyALnNcQPF5E1QMyD3oXpaOv6ujqXtoNfEizPtL3W2u7TCsqqFbTq+7vukVc+rZv5iXRjKEzKSlIgEnsNuSciuHcZXTGPD6lt3Fw+7Z0nlNAhZjwn6nUjv3y0Z9uKaMv62jq3dim/NFieGbfY1uHlnIg405NHe/tKx0Gm+2/m94zApr8QXkS89Cv6othlM6qPYTl4eLGkMZrmdAgAeCEvxmEDw6Qk4UVlqOOO9jKZEhMGP271sNninCgg23bd8iNXd977jzTzkbfmU5cO/uxg689v7UBtmbc8Wxn5+9C22thBZ1QyyOe0cyktHQdXNmW9nJvPyOqasH4yQNn70R6h2W7vIB1uXdf/5acDMydizl3K+fSd1X8rGr73T7IzGK8KKfdbanrDt6gFL9wsvi0nqNgM8ql0NhuvBXgb6h5p2Jh6Pv/4lfMEXDF0gKjnlf2nUAkcLubb2IkbbuOcY0V4afAfzd7nO5jKW3qdvNCSeJliNG42br8mEW7nIp9d8KUTfBGNKjH4RqiNkC7jMxjoAH3zn7JsfcNeAOZqRt3/PKZJuvHLouHrayNBJwDY8wMA7DmQqn8GUaZE15f0a2BLFnVpuupNeC5dIS3CGpgeuuY3PZJRI4OUs4mJv5Jo75G/LCOT7QmFxsQI+wkknsqOioCNI2BLDsHpUNBQSMUsDLxolZI+9laiDT+ORimhID+3N7RJMymS39LA0GQ2KB5UWeC/Rle3iExUv/RhqIHJipaSip5iCSGFZKB8u7TaOJNy9vXwuYnm5N23x0NDw1zhlEd/K/w1xCwiwXscJyY/lYKavx7lCfOTYw5b9WFx91W0gUaAunaUd9sV2xCBekqHZt/2xDbu3TKEYUpw9ub/4w3qBFeimDunpPYuzq2VcmIFgCzqmZjnq4aVJ+MWhUFl0Mpnbj6nAIirmDIt4x15wFOa3pgs4yy+EbyPHHxAE+2Wk+h3P4lOeKjKft2TnJciAoi/LkrsMUamd1moLtyXIJLZO8n7Tn16myzTxZslTB+OrRAXRwLIFy3PX/yhsJDNkc6u7V2kAqoTf0xfE+vsYbC3EN8L5TxxE7W9GyzfDXYA3EqaZ6A2Q2+pdsQ2xEmSVtU3a8JqXqV2uFG+wuT9LSWv0SnJmhIxAZ0HDyGl+0RsAA3tjhaZjHkBQ0Rkomr8rInE/ArxWEOgVrA00oJkq5H329U5HI3NV1/9CQOA2jv8n3/3zK3J0LD41aqotU0XfGJwHosFMDIvNmY0a1TUEaGsr0WUKr9Wcp8MWuNLrOGcf5AUJop/hdeubTDaAOJv+kTcAZAsw7iQFdDaIuzhj34p5rNU3WDxBd+6piiAWznh6a8NRDu0MVaatDp1mtvD+3xamGzc39S0mDbtkHw4lpjaBSaOJfTdfMr1hJas7FiYHF1nk54Y4joxLQTEz8XA9uWqJp6M67LQbZ8yse3TFpPPMLZ9Nuxdztkm4m2XreZSroTpbKzg9N0c2XFGoHL9vrYkUMH0FNbu9BcAHNnOKzx3vShwfYi/ods+5fVtn/aF+QwDIrA9aU/jVAAMxsEsZMcZ0czFunjs1kGHo2/8b7cWHN2Hw/KPnc/pthY5fYrj/rcuPHGWmGC1gjMUOuIoovEux7hxGrvT4VP+F9J07QDnqC7HRgcL9kUhz2HBMR2OApzhmVDgv23KKbAd6ihIIBee2F2ss2OPzamz/ZhTZ9oBHItiK1c0oAzdtsm+Xl4f9d/r3ME8mTsg6cYBGNvLVc/eJAzZBYjb74qR/3dz4YcfisD3X2oepC7gQwAy7gFw3vi6efpr4HjRwuSq3SzpuMbG6rrSF8Dx2LMU6oOAfLTPQ0V5ub/AlYf6JPD3jqdeP77X+b5Ga8/XypXVjhctTGqaHzg7ftUBTjleeCbVtLDxvNL6gvDecdCmr1RxRyhxB+45QYv2je+qdrqk23V6wKwf+Sn3DQ6kmFgYJX7s87hE1VY7BMfzWtGRkhZvtUkziuI57dmh+ZweHwfRbTI4zTOKxsC4/zH1IAv0+KbezEP58TRsKui5t4ZU8OezWmXGhnJNojKD6e3PXvJSi/HRvyFjwU7w06Wck3WmzQjw32//3Ye3L5wu02cHE8GW5vMu/5rK/+k3qEnceX69Mr1SFvOA9qScecbej9EQZptBsHq2y023TUT1kY2V5W1TLdFIy7OQM8QguKFYq4rGUS/NV49V7R8zzWA9bP9TrSULkuB9Pzu01Ucm66aV7TfBJrKuLmmpapbGMAsyja8f7y4QX3HAYGy9yV//Cvf1Ri7yiGDV8QH57x59Kaku8unyf2DHOo8ZvxCMlfpjFgqGJd+37k5GjZvVbyjhtk3vaa6XgtUO3ZSE/Kau9wvUt2yn28pXLbNk+muNYEMZLpHwOiBHedyYfop26lbdmeirJeLUgytGfr0kanGkLdPpumbjJDGdoTKbwKamV1PfaWglJtp2I7VNYd2xumWqcfT/zXAEat+jcA561Gu/A32ma8uAzLe4OZfpnNVY4VZoKhuwo05azI/X8a6R9lQmWNRuN9PiZuSNaXbB3Hp/lJPCkkpF+bVy6U1TB5qqdBXv6cunDs+mX12uR2YqXX/oaF1EfadAx49u6zbU+MeeqrAnhVpTxlRTMqvJQmwY+2qZpamkrTK9KURlHLnu5/XMVdD4FZ8heHat2Nb7XFhhKD7tgioQoLYI3X4HDANB+20YGC4Mg4gInBlKHQbDiGgzvP6OwTFEFqcmzbq0CKpWow2PTDk5Hh3NHq9SPpnXV2hXr7Sj5/FqVDWS21TecQ2VT+WGNKqkklO47hfOLgLPWRctA5kht6gD31jKAV1tsdIO0EjHwFZtmjjvsN3kMydgu228dO+YEVotim2TThHK6xvIucpOder49MJTHZ/sVlYnN/rDR+UsPHOU53KWSppsBb+gno9ImEKkcpvmlqymJnF5BuRmbYIjmEq9CFd8NRfn55EEbGd3x3N08CtCuD9EbrmhzGHljpglJlFB6msylW667Q45BSWVu+6570FRzmuuVUXnoUeqPTbnqGP0XjKU67ytn3hbjXdYRLGK9q0YLkF16tVq1GCBm0eTeN9ICJiIS4pqzi3Ju9p0WKq9zOcdkaZTui49enXbrs+iDK8EZMoyKVtO6VdlyEAxUD4/l/adcwpdctm8rUjFRtmCn09UJpYLfomM8qvfosUUPWZYcdjwoOBCwaBxEDlghCAEEg8f1y5IOKsJoUyYZg9ULLbCJ94zw+kDH3s/MLE0lsXyWBEr5/argzqtUW9qBlTT1ZWPcfbXhDwqmcWGt2KqLuvAIY+I5sbAD2s0dg28tLQAf7yyjCq9AOeOKC9txn3r8aJ/lwCmpw6puKzyDwoBJKN+rxpDRsifmcqX7/Vpu6y+AgAAAA==) format('woff2'); unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; } </style><filter filterRes="100" id="shadow" x="0" y="0"><feGaussianBlur stdDeviation="2 2"/><feOffset dx="2" dy="2"/></filter> structsDirector Director Construct() Builder Builder (a) BuildPart() Director->Builder ConcreteBuilder ConcreteBuilder BuildPart() GetResult() Builder->ConcreteBuilder Product Product ConcreteBuilder->Product CREATED WITH YUML

Builder example

Imagine that we have a large model with many parameters that we want to run.

There's a lot more to defining a model than just adding agents of different kinds: we need to define boundary conditions, specify wind speed or light conditions.

We could define all of this for an imagined advanced Model with a very very long constructor, with lots of optional arguments:

In [19]:
class Model:
    def __init__(self, xsize, ysize,
                 agent_count, wind_speed,
                 agent_sight_range, eagle_start_location):
        pass

Builder preferred to complex constructor

However, long constructors easily become very complicated. Instead, it can be cleaner to define a Builder for models. A builder is like a deferred factory: each step of the construction process is implemented as an individual method call, and the completed object is returned when the model is ready.

In [20]:
# Create a bare bones Model so that we can use our builder

class Model:
    def __init__(self,):
        ...

    def simulate(self):
        print("Starting simulation")
        ...
In [21]:
class ModelBuilder:
    def start_model(self):
        self.model = Model()
        self.model.xlim = None
        self.model.ylim = None
        
    def set_bounds(self, xlim, ylim):
        self.model.xlim = xlim
        self.model.ylim = ylim
    
    def add_agent(self, xpos, ypos):
        pass # Implementation here
    
    def finish(self):
        self.validate()
        return self.model
    
    def validate(self):
        assert(self.model.xlim is not None)
        # Check that the all the
        # parameters that need to be set
        # have indeed been set.

Inheritance of an Abstract Builder for multiple concrete builders could be used where there might be multiple ways to build models with the same set of calls to the builder: for example a version of the model builder yielding models which can be executed in parallel on a remote cluster.

Using a builder

In [22]:
builder = ModelBuilder()
builder.start_model()

builder.set_bounds(500, 500)
builder.add_agent(40, 40)
builder.add_agent(400, 100)

model = builder.finish()
model.simulate()
Starting simulation

Avoid staged construction without a builder.

We could, of course, just add all the building methods to the model itself, rather than having the model be yielded from a separate builder.

This is an antipattern that is often seen: a class whose __init__ constructor alone is insufficient for it to be ready to use. A series of methods must be called, in the right order, in order for it to be ready to use.

This results in very fragile code: its hard to keep track of whether an object instance is "ready" or not. Use the builder pattern to keep deferred construction in control.

We might ask why we couldn't just use a validator in all of the methods that must follow the deferred constructors; to check they have been called. But we'd need to put these in every method of the class, whereas with a builder, we can validate only in the finish method.

Other resources

There are a lot of design patterns and one explanation might not work well for all people so here are some extra sources of information about them. Spending some time to understand them can pay off in the future so you don't reinvent the wheel!